清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Combinatorial Optimization-Enriched Machine Learning to Solve the Dynamic Vehicle Routing Problem with Time Windows

车辆路径问题 强化学习 稳健性(进化) 计算机科学 布线(电子设计自动化) 管道(软件) 数学优化 动态规划 运筹学 人工智能 工程类 算法 计算机网络 数学 生物化学 化学 基因 程序设计语言
作者
Léo Baty,Kai Jungel,Patrick S. Klein,Axel Parmentier,Maximilian Schiffer
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (4): 708-725 被引量:22
标识
DOI:10.1287/trsc.2023.0107
摘要

With the rise of e-commerce and increasing customer requirements, logistics service providers face a new complexity in their daily planning, mainly due to efficiently handling same-day deliveries. Existing multistage stochastic optimization approaches that allow solving the underlying dynamic vehicle routing problem either are computationally too expensive for an application in online settings or—in the case of reinforcement learning—struggle to perform well on high-dimensional combinatorial problems. To mitigate these drawbacks, we propose a novel machine learning pipeline that incorporates a combinatorial optimization layer. We apply this general pipeline to a dynamic vehicle routing problem with dispatching waves, which was recently promoted in the EURO Meets NeurIPS Vehicle Routing Competition at NeurIPS 2022. Our methodology ranked first in this competition, outperforming all other approaches in solving the proposed dynamic vehicle routing problem. With this work, we provide a comprehensive numerical study that further highlights the efficacy and benefits of the proposed pipeline beyond the results achieved in the competition, for example, by showcasing the robustness of the encoded policy against unseen instances and scenarios. History: This paper has been accepted for the Transportation Science special issue on DIMACS Implementation Challenge: Vehicle Routing Problems. Funding: This work was supported by Deutsche Forschungsgemeinschaft [Grant 449261765].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
6秒前
firesquall完成签到,获得积分10
7秒前
11秒前
16秒前
Smoiy完成签到 ,获得积分10
17秒前
31秒前
34秒前
37秒前
37秒前
ding应助Tethys采纳,获得10
39秒前
火焰向上发布了新的文献求助10
40秒前
火焰向上完成签到,获得积分10
46秒前
47秒前
53秒前
自然的含蕾完成签到 ,获得积分10
55秒前
1分钟前
1分钟前
张超发布了新的文献求助10
1分钟前
woxinyouyou完成签到,获得积分0
1分钟前
1分钟前
JamesPei应助细心的语蓉采纳,获得10
1分钟前
NS完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Tethys发布了新的文献求助10
1分钟前
ahui完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
韩麒嘉完成签到 ,获得积分10
2分钟前
Dsxxx发布了新的文献求助10
2分钟前
jiangjiang完成签到 ,获得积分10
2分钟前
2分钟前
Barid完成签到,获得积分10
2分钟前
2分钟前
搜集达人应助Dsxxx采纳,获得10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784818
求助须知:如何正确求助?哪些是违规求助? 3330065
关于积分的说明 10244252
捐赠科研通 3045410
什么是DOI,文献DOI怎么找? 1671678
邀请新用户注册赠送积分活动 800597
科研通“疑难数据库(出版商)”最低求助积分说明 759524