清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning based plot level rice lodging assessment using multi-spectral UAV remote sensing

绘图(图形) 遥感 计算机科学 人工智能 环境科学 农业工程 计算机视觉 工程类 数学 地理 统计
作者
Mukesh Kumar,Bimal K. Bhattacharya,Mehul R. Pandya,B. K. Handique
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108754-108754 被引量:6
标识
DOI:10.1016/j.compag.2024.108754
摘要

Rice plant lodging leads to change in canopy structure, yield loss and creates a menace in harvest operations. In situ assessment of lodging is time consuming, labour intensive, inefficient and inaccurate. Its assessment contributes greatly in in-situ field management and damage analysis. In this study, imaging observations from ten-band (within 444–842 nm) multispectral camera at 0.06 m Ground Sampling Distance (GSD) on-board an unmanned aerial vehicle (UAV) were acquired over a rice research farm (22.7930 N and 72.57140 E), Anand, Gujarat in western part of India. A set of features such as spectral reflectance, vegetation indices, colour coordinates and index, textural parameters and combination of all these were used for discriminating lodged rice crop from standing ones. All these features were extracted and analysed to optimize the sensitive features followed by discrimination of these two classes of rice using ensemble learning based Random Forest (RF) classifier. The analysis revealed that Green, Red-edge and Near-infrared (NIR) bands showed most optimal spectral features for lodging detection. The mean texture of these bands was also found to be sensitive indicators for rice lodging. Combined features with RF classifier produced an overall accuracy of 96.1% with kappa coefficient (κ) of 0.92 followed by textural features with an overall accuracy of 93.5 % and κ of 0.86. Plot level lodging assessment revealed that lodged area varied from 0.1 % to 15.5 % of the cropped area over different plots. The results were validated with the visually interpreted lodged areas using RGB image that resulted into R2 of 0.97 with relative root mean square error (rRMSE) of 0.02 %. Our results conclude that multispectral UAV based remote sensing can help in rapid damage assessment and plot-level field management with high precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
lanxinge完成签到 ,获得积分10
11秒前
hongping发布了新的文献求助10
14秒前
谷雨完成签到 ,获得积分10
16秒前
李志全完成签到 ,获得积分10
17秒前
hongping完成签到,获得积分10
23秒前
jlwang完成签到,获得积分10
24秒前
NINI完成签到 ,获得积分10
25秒前
26秒前
lu发布了新的文献求助10
33秒前
找文献的天才狗完成签到,获得积分10
38秒前
Arthur完成签到,获得积分10
42秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
47秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
昏睡的乌冬面完成签到 ,获得积分10
57秒前
香丿完成签到 ,获得积分10
1分钟前
1分钟前
Jiangtao发布了新的文献求助10
1分钟前
woxinyouyou完成签到,获得积分10
1分钟前
1820发布了新的文献求助10
2分钟前
1820完成签到,获得积分20
3分钟前
一条蛆完成签到 ,获得积分10
3分钟前
科研小白完成签到 ,获得积分10
3分钟前
充电宝应助Flash采纳,获得10
3分钟前
吊炸天完成签到 ,获得积分10
3分钟前
Hello应助潇洒的凝梦采纳,获得10
3分钟前
minnie完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
海阔天空完成签到 ,获得积分10
4分钟前
4分钟前
GMEd1son完成签到,获得积分10
4分钟前
4分钟前
橘子同学完成签到 ,获得积分10
4分钟前
Peter完成签到 ,获得积分10
4分钟前
wonwojo完成签到 ,获得积分10
5分钟前
syh5527029完成签到 ,获得积分10
5分钟前
zhangjianzeng完成签到 ,获得积分10
5分钟前
叶问夏完成签到 ,获得积分10
5分钟前
沉沉完成签到 ,获得积分0
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5822962
求助须知:如何正确求助?哪些是违规求助? 5989606
关于积分的说明 15559617
捐赠科研通 4944020
什么是DOI,文献DOI怎么找? 2663199
邀请新用户注册赠送积分活动 1609237
关于科研通互助平台的介绍 1564154