Multiscale BLS-Based Lightweight Prediction Model for Remaining Useful Life of Aero-Engine

计算机科学 可扩展性 深度学习 人工智能 模块化设计 机器学习 特征(语言学) 数据挖掘 数据库 哲学 操作系统 语言学
作者
Tiantian Xu,Guangjie Han,Hongbo Zhu,Chuan Lin,Jinlin Peng
出处
期刊:IEEE Transactions on Reliability [Institute of Electrical and Electronics Engineers]
卷期号:73 (4): 1757-1767 被引量:16
标识
DOI:10.1109/tr.2023.3349201
摘要

Remaining useful life (RUL) prediction of aero-engines is one of the important issues in research related to engine health management. Although deep learning has made great progress in fault diagnosis research, successful training of deep learning models is very time-consuming and difficult to meet the real-time requirements of online RUL prediction applications. Broad learning systems (BLS) provide an alternative to deep learning networks with low computational resource requirements, fast training time, and incremental scalability. Based on the typical BLS, we propose a new lightweight multiscale BLS (MSBLS). Considering that RUL is influenced by the working condition factor, the discrete wavelet transform is used to generate multiresolution components, and then feature nodes are extracted on top of the components. An elastic net regularization technique is used to constrain the output weights of the nodes, preserving the significant nodes, and finally obtaining a more sparse MSBLS. Experiments are conducted using the NASA publicly available commercial modular aero-propulsion system simulation (C-MAPSS) dataset and the N-CMAPSS dataset, and our proposed MSBLS not only improves the accuracy of RUL prediction but also has a very short training time compared with the latest research methods nowadays.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
真实的蜜蜂完成签到,获得积分10
1秒前
1秒前
Akim应助李子昂采纳,获得10
2秒前
2秒前
2秒前
NexusExplorer应助限量款小辰采纳,获得10
2秒前
zliaoyuan完成签到,获得积分10
4秒前
lxdx发布了新的文献求助10
4秒前
4秒前
迷人迎曼发布了新的文献求助10
5秒前
5秒前
李大椰完成签到,获得积分10
6秒前
6秒前
6秒前
言非离发布了新的文献求助50
6秒前
science完成签到,获得积分10
7秒前
瞿江源完成签到,获得积分10
7秒前
7秒前
noyal完成签到,获得积分20
8秒前
嘴角微微仰起笑应助mmyhn采纳,获得10
8秒前
goodidea完成签到,获得积分10
8秒前
8秒前
李大椰发布了新的文献求助10
8秒前
Lucas应助mxb采纳,获得10
8秒前
9秒前
qingmoheng应助shuxiansheng采纳,获得10
9秒前
10秒前
mineng发布了新的文献求助10
10秒前
10秒前
DKY完成签到,获得积分10
10秒前
AIAIAIAIAIAI发布了新的文献求助10
10秒前
10秒前
cghmfgh发布了新的文献求助20
11秒前
11秒前
小布完成签到,获得积分20
11秒前
12秒前
12秒前
薄荷完成签到 ,获得积分10
12秒前
霸气乐菱发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532287
求助须知:如何正确求助?哪些是违规求助? 4621035
关于积分的说明 14576445
捐赠科研通 4560926
什么是DOI,文献DOI怎么找? 2498991
邀请新用户注册赠送积分活动 1478963
关于科研通互助平台的介绍 1450218