PLGA公司
纳米颗粒
体内
壳聚糖
生物物理学
化学
癌细胞
光毒性
体外
纳米技术
材料科学
癌症
生物化学
医学
生物技术
内科学
生物
作者
Polina A. Kotelnikova,Victoria O. Shipunova,Sergey M. Deyev
出处
期刊:Pharmaceutics
[Multidisciplinary Digital Publishing Institute]
日期:2023-12-20
卷期号:16 (1): 9-9
被引量:5
标识
DOI:10.3390/pharmaceutics16010009
摘要
Targeted medicine uses the distinctive features of cancer cells to find and destroy tumors. We present human epidermal growth factor receptor 2 (HER2)-targeted PLGA–chitosan nanoparticles for cancer therapy and visualization. Loading with two near-infrared (NIR) dyes provides imaging in the NIR transparency window and phototherapy triggered by 808 nm light. Nile Blue (NB) is a biocompatible solvatochromic NIR dye that serves as an imaging agent. Laser irradiation of IR-780 dye leads to a temperature rise and the generation of reactive oxygen species (ROS). Resonance energy transfer between two dyes allows visualization of tumors in a wide range of visible and IR wavelengths. The combination of two NIR dyes enables the use of nanoparticles for diagnostics only or theranostics. Modification of poly(lactic-co-glycolic acid) (PLGA)–chitosan nanoparticles with trastuzumab provides an efficient nanoparticle uptake by tumor cells and promotes more than sixfold specificity towards HER2-positive cells, leading to a synergistic anticancer effect. We demonstrate optical imaging of the HER2-positive mouse mammary tumor and tumor-specific accumulation of PLGA–IR-780–NB nanoparticles in vivo after intravenous administration. We managed to achieve almost complete suppression of the proliferative activity of cells in vitro by irradiation with an 808 nm laser with a power of 0.27 W for 1 min at a concentration at which nanoparticles are nontoxic to cells in the dark.
科研通智能强力驱动
Strongly Powered by AbleSci AI