已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Methods and datasets for segmentation of minimally invasive surgical instruments in endoscopic images and videos: A review of the state of the art

分割 计算机科学 人工智能 领域(数学) 手术器械 数据科学 医学物理学 计算机视觉 医学 外科 纯数学 数学
作者
Tobias Rueckert,Daniel Rueckert,Christoph Palm
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:169: 107929-107929 被引量:6
标识
DOI:10.1016/j.compbiomed.2024.107929
摘要

In the field of computer- and robot-assisted minimally invasive surgery, enormous progress has been made in recent years based on the recognition of surgical instruments in endoscopic images and videos. In particular, the determination of the position and type of instruments is of great interest. Current work involves both spatial and temporal information, with the idea that predicting the movement of surgical tools over time may improve the quality of the final segmentations. The provision of publicly available datasets has recently encouraged the development of new methods, mainly based on deep learning. In this review, we identify and characterize datasets used for method development and evaluation and quantify their frequency of use in the literature. We further present an overview of the current state of research regarding the segmentation and tracking of minimally invasive surgical instruments in endoscopic images and videos. The paper focuses on methods that work purely visually, without markers of any kind attached to the instruments, considering both single-frame semantic and instance segmentation approaches, as well as those that incorporate temporal information. The publications analyzed were identified through the platforms Google Scholar, Web of Science, and PubMed. The search terms used were "instrument segmentation", "instrument tracking", "surgical tool segmentation", and "surgical tool tracking", resulting in a total of 741 articles published between 01/2015 and 07/2023, of which 123 were included using systematic selection criteria. A discussion of the reviewed literature is provided, highlighting existing shortcomings and emphasizing the available potential for future developments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huohuo发布了新的文献求助10
2秒前
风趣的芝麻完成签到 ,获得积分10
3秒前
XLM完成签到,获得积分10
9秒前
yangyang完成签到,获得积分20
9秒前
牧谷完成签到 ,获得积分10
11秒前
yangyang关注了科研通微信公众号
18秒前
Swear完成签到 ,获得积分10
18秒前
西红柿不吃皮完成签到 ,获得积分10
24秒前
28秒前
农安咪发布了新的文献求助10
32秒前
Alane发布了新的文献求助30
32秒前
tjbdlyh完成签到 ,获得积分10
33秒前
科目三应助骑驴找马采纳,获得10
34秒前
36秒前
姚美阁完成签到 ,获得积分10
38秒前
huohuo完成签到,获得积分10
38秒前
40秒前
42秒前
不上课不行完成签到,获得积分10
45秒前
jenningseastera完成签到 ,获得积分0
49秒前
49秒前
C9完成签到 ,获得积分10
53秒前
53秒前
55秒前
1分钟前
wuming完成签到,获得积分10
1分钟前
1分钟前
YifanWang完成签到,获得积分0
1分钟前
骑驴找马发布了新的文献求助10
1分钟前
1分钟前
珊瑚海发布了新的文献求助10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
TMUEH_FCL完成签到,获得积分10
1分钟前
Phil发布了新的文献求助10
1分钟前
1分钟前
Herbs完成签到 ,获得积分10
1分钟前
英俊的铭应助yy采纳,获得10
1分钟前
Phil完成签到,获得积分10
1分钟前
TUTU完成签到 ,获得积分10
1分钟前
小贝发布了新的文献求助10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795475
求助须知:如何正确求助?哪些是违规求助? 3340512
关于积分的说明 10300384
捐赠科研通 3057032
什么是DOI,文献DOI怎么找? 1677368
邀请新用户注册赠送积分活动 805385
科研通“疑难数据库(出版商)”最低求助积分说明 762491