USFM: A Universal Ultrasound Foundation Model Generalized to Tasks and Organs towards Label Efficient Image Analysis

计算机科学 概括性 人工智能 分割 灰度 图像(数学) 机器学习 模式识别(心理学) 心理学 心理治疗师
作者
Jing Jiao,Jin Zhou,Xiaokang Li,Menghua Xia,Yi Huang,Lihong Huang,Na Wang,Xiaofan Zhang,Shichong Zhou,Yuanyuan Wang,Yi Guo
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2401.00153
摘要

Inadequate generality across different organs and tasks constrains the application of ultrasound (US) image analysis methods in smart healthcare. Building a universal US foundation model holds the potential to address these issues. Nevertheless, the development of such foundational models encounters intrinsic challenges in US analysis, i.e., insufficient databases, low quality, and ineffective features. In this paper, we present a universal US foundation model, named USFM, generalized to diverse tasks and organs towards label efficient US image analysis. First, a large-scale Multi-organ, Multi-center, and Multi-device US database was built, comprehensively containing over two million US images. Organ-balanced sampling was employed for unbiased learning. Then, USFM is self-supervised pre-trained on the sufficient US database. To extract the effective features from low-quality US images, we proposed a spatial-frequency dual masked image modeling method. A productive spatial noise addition-recovery approach was designed to learn meaningful US information robustly, while a novel frequency band-stop masking learning approach was also employed to extract complex, implicit grayscale distribution and textural variations. Extensive experiments were conducted on the various tasks of segmentation, classification, and image enhancement from diverse organs and diseases. Comparisons with representative US image analysis models illustrate the universality and effectiveness of USFM. The label efficiency experiments suggest the USFM obtains robust performance with only 20% annotation, laying the groundwork for the rapid development of US models in clinical practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
动漫大师发布了新的文献求助10
刚刚
TORCH发布了新的文献求助10
刚刚
两个轮发布了新的文献求助10
3秒前
xiaodan完成签到,获得积分10
4秒前
小二郎应助21采纳,获得10
5秒前
高兴孤萍发布了新的文献求助10
5秒前
高高碧发布了新的文献求助10
6秒前
6秒前
天真的青发布了新的文献求助10
6秒前
菜鸟咸鱼完成签到,获得积分10
8秒前
酷波er应助艾琳采纳,获得30
10秒前
11秒前
Arvin发布了新的文献求助10
11秒前
华仔应助asdfks采纳,获得10
12秒前
14秒前
14秒前
15秒前
没有昵称发布了新的文献求助10
15秒前
Saunak完成签到,获得积分10
15秒前
16秒前
刘刘发布了新的文献求助30
16秒前
爱科研的睿崽完成签到,获得积分10
16秒前
顾矜应助21采纳,获得10
16秒前
可达发布了新的文献求助10
18秒前
娜乌西卡发布了新的文献求助10
18秒前
Lucas应助llllllll采纳,获得10
20秒前
TORCH完成签到 ,获得积分10
22秒前
打打应助哭泣的丝采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
Thien应助科研通管家采纳,获得10
23秒前
桐桐应助科研通管家采纳,获得10
23秒前
深情安青应助天真的青采纳,获得30
23秒前
慕青应助科研通管家采纳,获得10
23秒前
23秒前
自由溪灵完成签到,获得积分10
24秒前
feng完成签到,获得积分10
24秒前
25秒前
27秒前
Knight发布了新的文献求助10
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784032
求助须知:如何正确求助?哪些是违规求助? 3329140
关于积分的说明 10240350
捐赠科研通 3044654
什么是DOI,文献DOI怎么找? 1671188
邀请新用户注册赠送积分活动 800178
科研通“疑难数据库(出版商)”最低求助积分说明 759213