Mutation Endmember Library Sparse Mixed Abundance Estimation Model for Glioma Margin Determination with Raman Spectroscopy

化学 端元 拉曼光谱 丰度估计 边距(机器学习) 丰度(生态学) 胶质瘤 光谱学 分析化学(期刊) 生物系统 色谱法 遥感 高光谱成像 癌症研究 光学 地质学 生态学 物理 量子力学 机器学习 计算机科学 生物
作者
Qingbo Li,Jianwen Wang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (21): 8273-8281
标识
DOI:10.1021/acs.analchem.3c03984
摘要

The glioma margin is a region of brain tissue where glioblastoma tissue transitions to normal tissue with varying levels of cancer cell concentration. This article uses Raman spectroscopy to detect the glioma margin, which is a fuzzy and uncertain substance that cannot be accurately identified by conventional pattern recognition algorithms. This article applies abundance estimation to Raman spectral unmixing of glioma marginal tissues for the accurate and real-time determination of the tumor surgical boundary during an operation. This article introduces a novel method: the mutation endmember library sparse mixed abundance estimation model. This method adds different representative Raman spectra to each endmember library to account for its dynamic properties, thus reducing errors from such variations and fully capturing the diversity within the substance. Moreover, it uses group sparse endmember bundle decomposition, where each substance endmember library consists of multiple Raman spectra. Fractionally mixed norms are used to ensure intergroup and intragroup sparsity, eliminate redundant spectra, and enhance the generalization ability of the abundance estimation. This method was compared with conventional abundance estimation methods. The experimental results of 112 human glioma margin tissues demonstrate that this method outperforms other methods in terms of accuracy, stability, and generalization ability. This article demonstrates the potential of miniature Raman spectroscopy as a new approach to in vivo and noninvasively determining intraoperative margin assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理的以亦完成签到,获得积分10
1秒前
大面包完成签到,获得积分10
2秒前
所所应助科研畅行采纳,获得10
5秒前
5秒前
6秒前
6秒前
整齐硬币完成签到,获得积分10
6秒前
轩轩发布了新的文献求助10
6秒前
wt完成签到,获得积分10
7秒前
闪闪完成签到 ,获得积分10
7秒前
9秒前
eric888应助xx采纳,获得100
9秒前
走走走发布了新的文献求助10
11秒前
11秒前
黄皮肤的黑蛆完成签到,获得积分20
12秒前
ctyyyu完成签到,获得积分10
12秒前
13秒前
Hello应助zyq采纳,获得10
14秒前
zzz发布了新的文献求助10
16秒前
蓝胖胖蓝完成签到,获得积分10
17秒前
星辰大海应助YB96采纳,获得10
18秒前
鼠小姐发布了新的文献求助10
18秒前
了一李应助走走走采纳,获得10
18秒前
科研畅行发布了新的文献求助10
19秒前
xhxh5946完成签到,获得积分10
20秒前
shuang发布了新的文献求助50
20秒前
21秒前
22秒前
雪人不怕火完成签到 ,获得积分10
22秒前
23秒前
无心的平蝶应助MS903采纳,获得10
23秒前
23秒前
HEHXU完成签到,获得积分10
23秒前
希望天下0贩的0应助zzz采纳,获得10
23秒前
大熊完成签到,获得积分10
24秒前
蔡蔡完成签到 ,获得积分10
25秒前
稳重盼夏发布了新的文献求助10
25秒前
酷酷的雨琴完成签到,获得积分10
26秒前
27秒前
28秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Guideline No. 345: Primary Dysmenorrhea 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4058943
求助须知:如何正确求助?哪些是违规求助? 3597286
关于积分的说明 11427974
捐赠科研通 3322307
什么是DOI,文献DOI怎么找? 1826769
邀请新用户注册赠送积分活动 897369
科研通“疑难数据库(出版商)”最低求助积分说明 818374