Analytical solution for laminar entrance flow in circular pipes

层流 机械 流量(数学) 层流下层 材料科学 流动分离 物理 湍流
作者
Taig Young Kim
出处
期刊:Journal of Fluid Mechanics [Cambridge University Press]
卷期号:979 被引量:7
标识
DOI:10.1017/jfm.2023.1060
摘要

This study introduces an analytical solution for the laminar entrance flow in circular pipes, aiming to confirm the occurrence of velocity overshoot. Velocity overshoot is characterised by the maximum axial velocity appearing near the pipe wall instead of the central axis. Similar to the previous studies, the analytical solution is derived from the parabolised Navier–Stokes equation; however, the specific approach used in linearising the momentum equation has not been attempted before. The accuracy of this analytical solution has been verified through a comprehensive comparison with various published experimental data. The existence of velocity overshoot at a short distance from the inlet, which is evident in numerous numerical calculations based on the full Navier–Stokes equations and corroborated by recent magnetic resonance (MR) velocimetry experiments, is identified analytically for the first time. The parabolised Navier–Stokes equation has inherent self-similarity with respect to the Reynolds number, implying that $Re$ is incorporated into the dimensionless variables rather than serving as an independent flow parameter. According to both MR velocimetry measurements and the present analytical solution, the self-similarity is not valid immediately following the pipe inlet, and this becomes more evident as $Re$ decreases; hence, the analytical solution derived from the parabolised Navier–Stokes equation cannot accurately predict the evolution of the velocity profile within this region near the pipe inlet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dugu完成签到,获得积分20
刚刚
Mydddg发布了新的文献求助10
1秒前
李爱国应助同瓜不同命采纳,获得10
1秒前
852应助pastor采纳,获得100
1秒前
迷ni发布了新的文献求助30
1秒前
脑洞疼应助Zoey采纳,获得10
1秒前
lemon完成签到,获得积分20
1秒前
1秒前
zhscu完成签到,获得积分10
2秒前
2秒前
2秒前
小猴发布了新的文献求助10
3秒前
dew应助larme采纳,获得10
3秒前
自洽完成签到,获得积分10
3秒前
WXY完成签到,获得积分10
3秒前
实验室梅梅完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
李健应助又又采纳,获得10
5秒前
5秒前
saily完成签到,获得积分10
5秒前
易瞳发布了新的文献求助20
6秒前
大个应助铁妞妞是土猫采纳,获得10
7秒前
小马甲应助奇美拉采纳,获得10
7秒前
李里哩发布了新的文献求助10
7秒前
小羊发布了新的文献求助10
7秒前
8秒前
8秒前
于豪杰发布了新的文献求助10
8秒前
smottom应助缥缈的巧蕊采纳,获得10
8秒前
8秒前
9秒前
上官若男应助ly666采纳,获得10
9秒前
sssss完成签到,获得积分10
10秒前
10秒前
ERYK完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750825
求助须知:如何正确求助?哪些是违规求助? 5466125
关于积分的说明 15368187
捐赠科研通 4890033
什么是DOI,文献DOI怎么找? 2629516
邀请新用户注册赠送积分活动 1577711
关于科研通互助平台的介绍 1534073