Enhancing anthracnose detection in mango at early stages using hyperspectral imaging and machine learning

高光谱成像 炭疽菌 园艺 胶孢炭疽菌 光谱特征 人工智能 计算机科学 生物 遥感 地理
作者
Carlos Hernández,Nuria Aleixos,Juan Gómez‐Sanchís,Sergio Cubero,Flavio Prieto,J. Blasco
出处
期刊:Postharvest Biology and Technology [Elsevier]
卷期号:209: 112732-112732 被引量:13
标识
DOI:10.1016/j.postharvbio.2023.112732
摘要

Anthracnose, caused by Colletotrichum sp. infections, poses a significant threat to mango production worldwide, resulting in substantial losses. This devastating disease is challenging to detect and control, primarily due to its ability to spread rapidly. The methods currently used to control anthracnose are primarily corrective, relying on disease detection in the late stages when the infection becomes visible. Hence, there is a need for tools to detect the infection at early stages, before symptoms appear. Hyperspectral imaging systems are promising for developing non-destructive solutions to assess and detect external and internal damage in fruit, including decay caused by anthracnose. These advanced imaging systems make early detection possible before the symptoms are visible, allowing for timely intervention and potentially more effective disease control. This work aims to evaluate the possibility of early detection of anthracnose in two mango cultivars using hyperspectral imaging and machine learning methods. Secondly, to establish correlations between specific wavelengths and the physicochemical symptoms associated with anthracnose. Lastly, to develop a robust model for the spectral detection of anthracnose on mango fruit. Mangoes were inoculated with spores of Colletotrichum gloeosporioides. Hyperspectral images of control and infected fruit were captured in the 450–970 nm spectral range. Five machine-learning models were used to obtain the method that best fits the spectral data. The best model achieved an accuracy = 0.961, recall = 0.961, specificity = 0.992, F1 = 0.961 and Matthews correlation coefficient (MCC) = 0.953 for 'Keitt', and an accuracy = 0.975, recall = 0.976, specificity = 0.995, F1 = 0.975 and MCC = 0.971 for 'Osteen', showing the feasibility to detect early anthracnose infection in mango fruit within 48 h after pathogen inoculation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
畅快心情完成签到 ,获得积分10
1秒前
5秒前
9秒前
爱学习的毛完成签到,获得积分10
10秒前
tangke发布了新的文献求助10
11秒前
hutao完成签到,获得积分10
14秒前
小蘑菇应助rover采纳,获得10
15秒前
special完成签到 ,获得积分10
18秒前
19秒前
欣欣完成签到,获得积分10
20秒前
liuhuayaxi发布了新的文献求助10
22秒前
等待凝海完成签到,获得积分10
28秒前
33秒前
研都不研了完成签到 ,获得积分10
33秒前
kk完成签到 ,获得积分10
34秒前
芋头完成签到 ,获得积分10
35秒前
smm发布了新的文献求助10
38秒前
38秒前
徐涵完成签到 ,获得积分10
40秒前
46秒前
46秒前
46秒前
46秒前
46秒前
46秒前
46秒前
46秒前
46秒前
46秒前
47秒前
47秒前
47秒前
47秒前
思源应助科研通管家采纳,获得10
47秒前
47秒前
汉堡包应助科研通管家采纳,获得10
47秒前
打打应助科研通管家采纳,获得10
47秒前
乐乐应助科研通管家采纳,获得10
47秒前
XPX完成签到 ,获得积分10
50秒前
上官若男应助狂野大公猪采纳,获得30
51秒前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847423
求助须知:如何正确求助?哪些是违规求助? 6225776
关于积分的说明 15620117
捐赠科研通 4964073
什么是DOI,文献DOI怎么找? 2676366
邀请新用户注册赠送积分活动 1620962
关于科研通互助平台的介绍 1576895