Breast ultrasound image despeckling using multi-filtering DFrFT and adaptive fast BM3D

散斑噪声 计算机科学 人工智能 计算机视觉 斑点图案 噪音(视频) 滤波器(信号处理) 乳腺超声检查 块(置换群论) 各项异性扩散 中值滤波器 降噪 模式识别(心理学) 图像处理 图像(数学) 数学 乳腺摄影术 乳腺癌 医学 几何学 癌症 内科学
作者
Tong Ying,Yaling Chen,Yu Yan,HE Rui-qing
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:246: 108042-108042 被引量:1
标识
DOI:10.1016/j.cmpb.2024.108042
摘要

Improving the quality of breast ultrasound images is of great significance for clinical diagnosis which can greatly boost the diagnostic accuracy of ultrasonography. However, due to the influence of ultrasound imaging principles and acquisition equipment, the collected ultrasound images naturally contain a large amount of speckle noise, which leads to a decrease in image quality and affects clinical diagnosis. To overcome this problem, we propose an improved denoising algorithm combining multi-filter DFrFT (Discrete Fractional Fourier Transform) and the adaptive fast BM3D (Block Matching and 3D collaborative filtering) method. Firstly, we provide the multi-filtering DFrFT method for preprocessing the original breast ultrasound image so as to remove some speckle noise early in fractional transformation domain. Based on the fractional frequency spectrum characteristics of breast ultrasound images, three types of filters are designed correspondingly in low, medium, and high frequency domains. And by integrating filtered images, the enhanced images are obtained which not only remove some speckle noise in background but also preserve the details of breast lesions. Secondly, for further enhancing the image quality on the basis of multi-filter DFrFT, we propose the adaptive fast BM3D method by introducing the DBSCAN-based super pixel segmentation to block matching process, which utilizes super pixel segmentation labels to provide a reference on how similar it is between target block and retrieval blocks. It reduces the number of blocks to be retrieved and make the matched blocks with more similar features. At last, the local noise parameter estimation is also adopted in the hard threshold filtering process of traditional BM3D algorithm to achieve local adaptive filtering and further improving the denoising effect. The synthetic data and real breast ultrasound data examples show that this combined method can improve the speckle suppression level and keep the fidelity of structure effectively without increasing time cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yujier应助1028采纳,获得10
1秒前
wsl发布了新的文献求助10
3秒前
所所应助善始善终采纳,获得10
4秒前
5秒前
铮铮铁骨发布了新的文献求助10
6秒前
12545发布了新的文献求助10
6秒前
8秒前
完美世界应助苗苗043采纳,获得20
10秒前
Hello应助微笑的卿采纳,获得10
11秒前
yueguang发布了新的文献求助10
11秒前
xiaoqi完成签到,获得积分10
12秒前
多多发布了新的文献求助10
13秒前
14秒前
14秒前
邱志鸿发布了新的文献求助10
19秒前
20秒前
缘__发布了新的文献求助10
20秒前
R沫完成签到,获得积分10
21秒前
21秒前
21秒前
22秒前
邱志鸿完成签到,获得积分10
23秒前
guojingjing完成签到,获得积分20
23秒前
zhangnan发布了新的文献求助10
25秒前
26秒前
Feathamity发布了新的文献求助10
26秒前
xhj666完成签到,获得积分10
26秒前
YUNA完成签到 ,获得积分10
27秒前
28秒前
Owen应助缘__采纳,获得10
31秒前
SciGPT应助Feathamity采纳,获得10
34秒前
纪言七许完成签到 ,获得积分10
34秒前
小黄人举报夏山求助涉嫌违规
35秒前
Wenjian7761完成签到,获得积分10
35秒前
pass完成签到 ,获得积分10
37秒前
英姑应助快乐的雨竹采纳,获得10
39秒前
39秒前
yueguang完成签到,获得积分10
41秒前
寒冷的小霸王完成签到,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Psychology and Work Today 1000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5830928
求助须知:如何正确求助?哪些是违规求助? 6059764
关于积分的说明 15580438
捐赠科研通 4950290
什么是DOI,文献DOI怎么找? 2667279
邀请新用户注册赠送积分活动 1612871
关于科研通互助平台的介绍 1567997