已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Breast ultrasound image despeckling using multi-filtering DFrFT and adaptive fast BM3D

散斑噪声 计算机科学 人工智能 计算机视觉 斑点图案 噪音(视频) 滤波器(信号处理) 乳腺超声检查 块(置换群论) 各项异性扩散 中值滤波器 降噪 模式识别(心理学) 图像处理 图像(数学) 数学 乳腺摄影术 乳腺癌 医学 几何学 癌症 内科学
作者
Tong Ying,Yaling Chen,Yu Yan,HE Rui-qing
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:246: 108042-108042 被引量:1
标识
DOI:10.1016/j.cmpb.2024.108042
摘要

Improving the quality of breast ultrasound images is of great significance for clinical diagnosis which can greatly boost the diagnostic accuracy of ultrasonography. However, due to the influence of ultrasound imaging principles and acquisition equipment, the collected ultrasound images naturally contain a large amount of speckle noise, which leads to a decrease in image quality and affects clinical diagnosis. To overcome this problem, we propose an improved denoising algorithm combining multi-filter DFrFT (Discrete Fractional Fourier Transform) and the adaptive fast BM3D (Block Matching and 3D collaborative filtering) method. Firstly, we provide the multi-filtering DFrFT method for preprocessing the original breast ultrasound image so as to remove some speckle noise early in fractional transformation domain. Based on the fractional frequency spectrum characteristics of breast ultrasound images, three types of filters are designed correspondingly in low, medium, and high frequency domains. And by integrating filtered images, the enhanced images are obtained which not only remove some speckle noise in background but also preserve the details of breast lesions. Secondly, for further enhancing the image quality on the basis of multi-filter DFrFT, we propose the adaptive fast BM3D method by introducing the DBSCAN-based super pixel segmentation to block matching process, which utilizes super pixel segmentation labels to provide a reference on how similar it is between target block and retrieval blocks. It reduces the number of blocks to be retrieved and make the matched blocks with more similar features. At last, the local noise parameter estimation is also adopted in the hard threshold filtering process of traditional BM3D algorithm to achieve local adaptive filtering and further improving the denoising effect. The synthetic data and real breast ultrasound data examples show that this combined method can improve the speckle suppression level and keep the fidelity of structure effectively without increasing time cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姜月发布了新的文献求助10
2秒前
3秒前
3秒前
夏天的倒影完成签到,获得积分10
3秒前
Ava应助ranran采纳,获得10
4秒前
5秒前
NexusExplorer应助杨武天一采纳,获得10
6秒前
9秒前
乔达摩悉达多完成签到 ,获得积分10
10秒前
科研通AI6.1应助树懒采纳,获得20
10秒前
褚青筠完成签到,获得积分10
11秒前
11秒前
Yee发布了新的文献求助10
12秒前
懒羊羊发布了新的文献求助10
12秒前
13秒前
14秒前
15秒前
LiXF完成签到,获得积分10
16秒前
zbzfp发布了新的文献求助10
17秒前
hms发布了新的文献求助10
18秒前
从容海完成签到 ,获得积分10
19秒前
舒展发布了新的文献求助10
21秒前
科研通AI6.1应助吃狼的羊采纳,获得10
22秒前
舒展完成签到,获得积分10
26秒前
我心明澈如镜完成签到 ,获得积分10
26秒前
二碘化钾完成签到 ,获得积分10
26秒前
共享精神应助小胡爱科研采纳,获得10
26秒前
Orange应助vtfangfangfang采纳,获得10
26秒前
陶醉凝丝完成签到 ,获得积分10
27秒前
潇洒映冬发布了新的文献求助10
28秒前
29秒前
hms完成签到 ,获得积分10
30秒前
31秒前
bkagyin应助LCY采纳,获得10
33秒前
充电宝应助科研通管家采纳,获得10
33秒前
华仔应助科研通管家采纳,获得10
33秒前
加菲丰丰应助科研通管家采纳,获得10
33秒前
淡然棒球完成签到 ,获得积分10
33秒前
Owen应助科研通管家采纳,获得10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5833933
求助须知:如何正确求助?哪些是违规求助? 6084102
关于积分的说明 15589296
捐赠科研通 4952668
什么是DOI,文献DOI怎么找? 2669006
邀请新用户注册赠送积分活动 1614353
关于科研通互助平台的介绍 1569164