Breast ultrasound image despeckling using multi-filtering DFrFT and adaptive fast BM3D

散斑噪声 计算机科学 人工智能 计算机视觉 斑点图案 噪音(视频) 滤波器(信号处理) 乳腺超声检查 块(置换群论) 各项异性扩散 中值滤波器 降噪 模式识别(心理学) 图像处理 图像(数学) 数学 乳腺摄影术 乳腺癌 医学 几何学 癌症 内科学
作者
Tong Ying,Yaling Chen,Yu Yan,HE Rui-qing
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:246: 108042-108042 被引量:1
标识
DOI:10.1016/j.cmpb.2024.108042
摘要

Improving the quality of breast ultrasound images is of great significance for clinical diagnosis which can greatly boost the diagnostic accuracy of ultrasonography. However, due to the influence of ultrasound imaging principles and acquisition equipment, the collected ultrasound images naturally contain a large amount of speckle noise, which leads to a decrease in image quality and affects clinical diagnosis. To overcome this problem, we propose an improved denoising algorithm combining multi-filter DFrFT (Discrete Fractional Fourier Transform) and the adaptive fast BM3D (Block Matching and 3D collaborative filtering) method. Firstly, we provide the multi-filtering DFrFT method for preprocessing the original breast ultrasound image so as to remove some speckle noise early in fractional transformation domain. Based on the fractional frequency spectrum characteristics of breast ultrasound images, three types of filters are designed correspondingly in low, medium, and high frequency domains. And by integrating filtered images, the enhanced images are obtained which not only remove some speckle noise in background but also preserve the details of breast lesions. Secondly, for further enhancing the image quality on the basis of multi-filter DFrFT, we propose the adaptive fast BM3D method by introducing the DBSCAN-based super pixel segmentation to block matching process, which utilizes super pixel segmentation labels to provide a reference on how similar it is between target block and retrieval blocks. It reduces the number of blocks to be retrieved and make the matched blocks with more similar features. At last, the local noise parameter estimation is also adopted in the hard threshold filtering process of traditional BM3D algorithm to achieve local adaptive filtering and further improving the denoising effect. The synthetic data and real breast ultrasound data examples show that this combined method can improve the speckle suppression level and keep the fidelity of structure effectively without increasing time cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪白梦容完成签到,获得积分10
1秒前
2秒前
小白应助沉静尔白采纳,获得20
3秒前
syringinry发布了新的文献求助10
3秒前
jin发布了新的文献求助10
3秒前
冰魂应助嘿嘿采纳,获得10
3秒前
今后应助奋斗的剑采纳,获得10
4秒前
猩心发布了新的文献求助30
4秒前
5秒前
7秒前
8秒前
感动芷珍完成签到,获得积分10
8秒前
珂小小发布了新的文献求助20
8秒前
思源应助ASHES采纳,获得10
8秒前
1111完成签到,获得积分10
9秒前
Akim应助火星探险采纳,获得10
10秒前
shunshun完成签到,获得积分20
10秒前
ardejiang发布了新的文献求助10
11秒前
lucky发布了新的文献求助10
11秒前
天天快乐应助yuan采纳,获得30
11秒前
12秒前
12秒前
13秒前
脑洞疼应助旺仔采纳,获得10
14秒前
14秒前
14秒前
MoJJ完成签到,获得积分10
14秒前
166完成签到,获得积分10
14秒前
有一套发布了新的文献求助10
15秒前
卡皮巴拉yuan完成签到,获得积分10
15秒前
16秒前
16秒前
17秒前
田様应助songjin111111采纳,获得10
17秒前
ohuigi发布了新的文献求助10
17秒前
Vaclav完成签到 ,获得积分10
18秒前
Alex发布了新的文献求助10
18秒前
18秒前
cccc完成签到,获得积分10
19秒前
yep发布了新的文献求助10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783737
求助须知:如何正确求助?哪些是违规求助? 3328914
关于积分的说明 10239295
捐赠科研通 3044388
什么是DOI,文献DOI怎么找? 1670975
邀请新用户注册赠送积分活动 799997
科研通“疑难数据库(出版商)”最低求助积分说明 759172