Deep learning-based algorithms for low-dose CT imaging: A review

医学 图像质量 医学物理学 迭代重建 深度学习 预处理器 还原(数学) 模态(人机交互) 算法 人工智能 放射科 机器学习 图像(数学) 几何学 数学 计算机科学
作者
Hongchi Chen,Qiuxia Li,Lazhen Zhou,Fangzuo Li
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:172: 111355-111355 被引量:27
标识
DOI:10.1016/j.ejrad.2024.111355
摘要

Abstract

The computed tomography (CT) technique is extensively employed as an imaging modality in clinical settings. The radiation dose of CT, however, is significantly high, thereby raising concerns regarding the potential radiation damage it may cause. The reduction of X-ray exposure dose in CT scanning may result in a significant decline in imaging quality, thereby elevating the risk of missed diagnosis and misdiagnosis. The reduction of CT radiation dose and acquisition of high-quality images to meet clinical diagnostic requirements have always been a critical research focus and challenge in the field of CT. Over the years, scholars have conducted extensive research on enhancing low-dose CT (LDCT) imaging algorithms, among which deep learning-based algorithms have demonstrated superior performance. In this review, we initially introduced the conventional algorithms for CT image reconstruction along with their respective advantages and disadvantages. Subsequently, we provided a detailed description of four aspects concerning the application of deep neural networks in LDCT imaging process: preprocessing in the projection domain, post-processing in the image domain, dual-domain processing imaging, and direct deep learning-based reconstruction (DLR). Furthermore, an analysis was conducted to evaluate the merits and demerits of each method. The commercial and clinical applications of the LDCT-DLR algorithm were also presented in an overview. Finally, we summarized the existing issues pertaining to LDCT-DLR and concluded the paper while outlining prospective trends for algorithmic advancement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小文cremen完成签到 ,获得积分10
1秒前
感谢大哥的帮助完成签到 ,获得积分10
1秒前
小火车完成签到,获得积分10
2秒前
喻康发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
5秒前
陨落的繁星完成签到,获得积分10
5秒前
布莱橙完成签到,获得积分10
5秒前
5秒前
光亮映波完成签到,获得积分10
6秒前
wmq发布了新的文献求助10
6秒前
white完成签到 ,获得积分10
7秒前
RadiantYT完成签到,获得积分10
7秒前
简单的冬瓜完成签到,获得积分10
8秒前
xr完成签到 ,获得积分10
8秒前
9秒前
小公牛完成签到 ,获得积分10
9秒前
foreverchoi发布了新的文献求助10
11秒前
在水一方应助比卜不采纳,获得10
11秒前
小老头儿完成签到,获得积分10
11秒前
等一个晴天完成签到,获得积分10
12秒前
流川枫完成签到,获得积分10
12秒前
万金油完成签到 ,获得积分10
14秒前
shift3310完成签到,获得积分10
18秒前
小马甲应助蝈蝈采纳,获得10
18秒前
不安青牛应助科研通管家采纳,获得10
19秒前
不安青牛应助科研通管家采纳,获得10
19秒前
sevenhill应助科研通管家采纳,获得10
19秒前
不安青牛应助科研通管家采纳,获得10
19秒前
红叶应助科研通管家采纳,获得10
19秒前
Rookie应助科研通管家采纳,获得10
19秒前
不安青牛应助科研通管家采纳,获得10
19秒前
不安青牛应助科研通管家采纳,获得10
19秒前
不安青牛应助科研通管家采纳,获得10
19秒前
sevenhill应助科研通管家采纳,获得10
20秒前
苹果完成签到 ,获得积分10
20秒前
科研小白完成签到,获得积分10
20秒前
393完成签到,获得积分20
21秒前
光之霓裳完成签到 ,获得积分10
21秒前
王欣完成签到 ,获得积分10
21秒前
秦时明月完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482706
求助须知:如何正确求助?哪些是违规求助? 4583446
关于积分的说明 14389578
捐赠科研通 4512683
什么是DOI,文献DOI怎么找? 2473180
邀请新用户注册赠送积分活动 1459251
关于科研通互助平台的介绍 1432861