Deep learning-based algorithms for low-dose CT imaging: A review

医学 图像质量 医学物理学 迭代重建 深度学习 预处理器 还原(数学) 模态(人机交互) 算法 人工智能 放射科 机器学习 图像(数学) 计算机科学 几何学 数学
作者
Hongchi Chen,Qiuxia Li,Lazhen Zhou,Fangzuo Li
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:172: 111355-111355 被引量:11
标识
DOI:10.1016/j.ejrad.2024.111355
摘要

Abstract

The computed tomography (CT) technique is extensively employed as an imaging modality in clinical settings. The radiation dose of CT, however, is significantly high, thereby raising concerns regarding the potential radiation damage it may cause. The reduction of X-ray exposure dose in CT scanning may result in a significant decline in imaging quality, thereby elevating the risk of missed diagnosis and misdiagnosis. The reduction of CT radiation dose and acquisition of high-quality images to meet clinical diagnostic requirements have always been a critical research focus and challenge in the field of CT. Over the years, scholars have conducted extensive research on enhancing low-dose CT (LDCT) imaging algorithms, among which deep learning-based algorithms have demonstrated superior performance. In this review, we initially introduced the conventional algorithms for CT image reconstruction along with their respective advantages and disadvantages. Subsequently, we provided a detailed description of four aspects concerning the application of deep neural networks in LDCT imaging process: preprocessing in the projection domain, post-processing in the image domain, dual-domain processing imaging, and direct deep learning-based reconstruction (DLR). Furthermore, an analysis was conducted to evaluate the merits and demerits of each method. The commercial and clinical applications of the LDCT-DLR algorithm were also presented in an overview. Finally, we summarized the existing issues pertaining to LDCT-DLR and concluded the paper while outlining prospective trends for algorithmic advancement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助谢奕采纳,获得10
2秒前
今后应助逆天了呀采纳,获得10
2秒前
3秒前
FSR完成签到,获得积分10
3秒前
wxf发布了新的社区帖子
4秒前
鱼会淹死吗完成签到,获得积分10
6秒前
7秒前
碧蓝紫山完成签到,获得积分10
8秒前
鳗鱼纸飞机完成签到,获得积分10
10秒前
英俊的铭应助工藤新一采纳,获得10
10秒前
12秒前
12秒前
13秒前
13秒前
15秒前
yangshu完成签到,获得积分10
16秒前
18秒前
神唐1发布了新的文献求助10
19秒前
gg发布了新的文献求助30
19秒前
朴实初夏发布了新的文献求助30
19秒前
yangshu发布了新的文献求助10
19秒前
搞怪的紫雪完成签到,获得积分10
20秒前
21秒前
SCI完成签到,获得积分10
21秒前
xfeng应助saf0852采纳,获得10
22秒前
charolte发布了新的文献求助10
23秒前
优秀的傲南完成签到,获得积分10
25秒前
27秒前
29秒前
30秒前
科研通AI5应助传统的雨文采纳,获得10
30秒前
三三四发布了新的文献求助10
31秒前
lulu完成签到,获得积分10
33秒前
暖暖发布了新的文献求助10
33秒前
Atari完成签到,获得积分10
33秒前
34秒前
健忘幻儿发布了新的文献求助10
35秒前
36秒前
38秒前
lulu发布了新的文献求助10
38秒前
高分求助中
Practitioner Research at Doctoral Level 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797603
求助须知:如何正确求助?哪些是违规求助? 3342992
关于积分的说明 10314523
捐赠科研通 3059700
什么是DOI,文献DOI怎么找? 1679083
邀请新用户注册赠送积分活动 806322
科研通“疑难数据库(出版商)”最低求助积分说明 763102