Deep learning-based algorithms for low-dose CT imaging: A review

医学 图像质量 医学物理学 迭代重建 深度学习 预处理器 还原(数学) 模态(人机交互) 算法 人工智能 放射科 机器学习 图像(数学) 几何学 数学 计算机科学
作者
Hongchi Chen,Qiuxia Li,Lazhen Zhou,Fangzuo Li
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:172: 111355-111355 被引量:27
标识
DOI:10.1016/j.ejrad.2024.111355
摘要

Abstract

The computed tomography (CT) technique is extensively employed as an imaging modality in clinical settings. The radiation dose of CT, however, is significantly high, thereby raising concerns regarding the potential radiation damage it may cause. The reduction of X-ray exposure dose in CT scanning may result in a significant decline in imaging quality, thereby elevating the risk of missed diagnosis and misdiagnosis. The reduction of CT radiation dose and acquisition of high-quality images to meet clinical diagnostic requirements have always been a critical research focus and challenge in the field of CT. Over the years, scholars have conducted extensive research on enhancing low-dose CT (LDCT) imaging algorithms, among which deep learning-based algorithms have demonstrated superior performance. In this review, we initially introduced the conventional algorithms for CT image reconstruction along with their respective advantages and disadvantages. Subsequently, we provided a detailed description of four aspects concerning the application of deep neural networks in LDCT imaging process: preprocessing in the projection domain, post-processing in the image domain, dual-domain processing imaging, and direct deep learning-based reconstruction (DLR). Furthermore, an analysis was conducted to evaluate the merits and demerits of each method. The commercial and clinical applications of the LDCT-DLR algorithm were also presented in an overview. Finally, we summarized the existing issues pertaining to LDCT-DLR and concluded the paper while outlining prospective trends for algorithmic advancement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无敌鱼发布了新的文献求助10
2秒前
呆瓜完成签到,获得积分10
2秒前
3秒前
3秒前
xiewuhua发布了新的文献求助10
4秒前
天天快乐应助jijikoko采纳,获得10
5秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
9秒前
10秒前
泡泡发布了新的文献求助10
10秒前
xzlijingjing完成签到 ,获得积分10
10秒前
思源应助一轮明月采纳,获得10
11秒前
所所应助xiewuhua采纳,获得10
11秒前
11秒前
Adc应助夏侯德东采纳,获得10
12秒前
zz完成签到 ,获得积分10
12秒前
12秒前
如意二娘完成签到 ,获得积分10
14秒前
15秒前
四斤瓜完成签到 ,获得积分10
15秒前
佳无夜完成签到,获得积分10
17秒前
bxbxbx发布了新的文献求助10
18秒前
18秒前
希望天下0贩的0应助泡泡采纳,获得10
19秒前
量子星尘发布了新的文献求助10
20秒前
共田水兽完成签到 ,获得积分10
20秒前
田様应助柔弱狗采纳,获得10
20秒前
大个应助贪玩的无招采纳,获得10
21秒前
jijikoko发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
23秒前
娇气的背包完成签到,获得积分10
24秒前
AryaZzz完成签到 ,获得积分10
24秒前
CMUSK完成签到 ,获得积分10
25秒前
26秒前
SciGPT应助zty采纳,获得10
26秒前
xx完成签到,获得积分10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 500
Processing of reusable surgical textiles for use in health care facilities 500
Population genetics 2nd edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5810892
求助须知:如何正确求助?哪些是违规求助? 5894838
关于积分的说明 15530527
捐赠科研通 4935261
什么是DOI,文献DOI怎么找? 2657600
邀请新用户注册赠送积分活动 1603911
关于科研通互助平台的介绍 1559149