A review of research on remote sensing images shadow detection and application to building extraction

影子(心理学) 计算机科学 遥感 鉴定(生物学) 建筑模型 特征提取 领域(数学) 人工智能 计算机视觉 地理 模拟 纯数学 心理治疗师 生物 植物 心理学 数学
作者
Xueyan Dong,Jiannong Cao,Weiheng Zhao
出处
期刊:European Journal of Remote Sensing [Informa]
卷期号:57 (1) 被引量:13
标识
DOI:10.1080/22797254.2023.2293163
摘要

Buildings are one of the most important habitats for humans, and therefore, accurate identification and extraction of building information in remote sensing images are crucial. Buildings in remote sensing images vary in shape and color due to differences in sensor acquisition methods, geographical location, and other factors. However, they all share a common feature – the presence of shadows. Obtaining accurate data from building shadows can provide a wealth of reliable information for building research. Consequently, it is crucial to review various methods for extracting building shadows, especially deep learning-based methods, to illustrate shadow implementation scenarios in building research: 1) building detection in very high resolution remote sensing images (VHRRSI); 2) building detection in SAR; 3) building change detection; 4) building damage assessment; 5) building height estimation; 6) building shadow removal; 7) other methods (such as building shadow data enhancement, detection of building shadows in ghost images, and conservation of historic buildings). This study discusses the advantages and disadvantages of building shadow detection methods and provides an overview of the datasets and evaluation metrics commonly used in studies of building shadow applications. We hope that this study will serve as a valuable reference for researchers in the field of building shadow studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
MonsterChen完成签到,获得积分10
1秒前
2秒前
2秒前
DQ发布了新的文献求助10
3秒前
左右发布了新的文献求助10
4秒前
yeu发布了新的文献求助10
4秒前
faustss完成签到,获得积分10
7秒前
11秒前
11秒前
文静的海完成签到,获得积分10
12秒前
酷波er应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
curry应助科研通管家采纳,获得10
13秒前
14秒前
CipherSage应助一条狗采纳,获得10
18秒前
那兰发布了新的文献求助10
20秒前
领导范儿应助闪闪路人采纳,获得10
22秒前
22秒前
Delight完成签到 ,获得积分0
23秒前
24秒前
皮皮鲲完成签到,获得积分10
24秒前
24秒前
25秒前
零源完成签到,获得积分10
29秒前
msl2023发布了新的文献求助10
29秒前
旁bu白发布了新的文献求助10
30秒前
富贵儿完成签到 ,获得积分10
32秒前
33秒前
36秒前
msl2023完成签到,获得积分10
36秒前
36秒前
PengDai发布了新的文献求助10
37秒前
40秒前
香蕉觅云应助认真白萱采纳,获得10
42秒前
毕嵩山发布了新的文献求助10
43秒前
王晓茜完成签到 ,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870132
求助须知:如何正确求助?哪些是违规求助? 6458854
关于积分的说明 15662868
捐赠科研通 4986157
什么是DOI,文献DOI怎么找? 2688699
邀请新用户注册赠送积分活动 1631046
关于科研通互助平台的介绍 1589154