Association between cardiometabolic index and depression: National Health and Nutrition Examination Survey (NHANES) 2011–2014

全国健康与营养检查调查 逻辑回归 萧条(经济学) 血脂异常 医学 接收机工作特性 环境卫生 临床心理学 人口学 肥胖 内科学 人口 经济 宏观经济学 社会学
作者
Xiang Zhou,XiaoLiang Tao,Li Zhang,Qiankun Yang,Zi-Jiao Li,Lu Dai,Lei Ya,Gang Zhu,Zhi-Feng Wu,Hui Yang,Kai‐Feng Shen,Chunmei Xu,Ping Liang,Xin Zheng
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:351: 939-947 被引量:51
标识
DOI:10.1016/j.jad.2024.02.024
摘要

Emerging evidence suggests a common pathophysiological basis for metabolic disorders and mental diseases. Despite the existence of reports suggesting a strong connection between dyslipidemia and depression, a comprehensive and reliable indicator to identify depression is still lacking. Cardiometabolic index (CMI) is an integrated index calculated from three vital metabolic indicators, including triglyceride (TG), high-density lipoprotein cholesterol (HDLC) and waist height ratio (WHtR). This study aims to explore the association between CMI and depression. Cross-sectional data of participants with complete information of CMI, depression, and other covariates were obtained from the National Health and Nutrition Examination Survey (NHANES). Weighted student's t-test and Chi-square test were used to identify the differences between two groups. Weighted multivariate logistic regression model, restricted cubic spline (RCS) regression analysis, subgroup analysis and interaction tests were conducted to explore the association between CMI and depression. Receiver operating curve (ROC) analysis and area under the curve (AUC) were also utilized to evaluate the performance of CMI in identifying depression. A positive correlation between CMI and depression was observed in 3794 participants included in the study, which was further confirmed to be non-linear via RCS regression analysis, with two significant inflection points being identified, including 0.9522 and 1.58. In the crude or adjusted models, individuals with a CMI level ≥ 0.9522 exhibited remarkably increased risk for developing depression. CMI got an AUC of 0.748 in identifying depression. Subgroup analyses and interaction tests indicate that the association between CMI and depression remained consistent across different subgroups and was not modified by other covariates except drinking. Those who are current drinkers and with a high CMI are more susceptible to suffer depression. An elevated CMI is linked to increased risk for depression. Addressing dyslipidemia and improving lipid levels may potentially lower the risk for depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
宁静致远完成签到,获得积分10
1秒前
颜雨晴发布了新的文献求助10
1秒前
街上的纸屑完成签到 ,获得积分20
2秒前
2秒前
思源应助万事尚未明晰采纳,获得10
2秒前
ShiShuai发布了新的文献求助10
2秒前
噗咔咔ya发布了新的文献求助10
2秒前
2秒前
3秒前
桐桐应助mumufan采纳,获得10
3秒前
lql关闭了lql文献求助
4秒前
量子星尘发布了新的文献求助10
4秒前
碧海流花完成签到,获得积分10
4秒前
zhaimen完成签到 ,获得积分10
5秒前
在水一方应助好运6连采纳,获得10
5秒前
5秒前
张启娜发布了新的文献求助10
5秒前
耳机分你一只诺完成签到,获得积分10
5秒前
6秒前
jsq发布了新的文献求助10
6秒前
6秒前
6秒前
朝思暮想发布了新的文献求助10
6秒前
星星发布了新的文献求助10
6秒前
cimu95完成签到 ,获得积分10
7秒前
myczh发布了新的文献求助10
7秒前
7秒前
洛水伊南完成签到,获得积分10
8秒前
李健应助研友_VZG64n采纳,获得10
9秒前
莯瑶完成签到,获得积分10
9秒前
深情安青应助Everglow采纳,获得10
9秒前
qiqi发布了新的文献求助10
9秒前
9秒前
自觉鸵鸟发布了新的文献求助10
10秒前
10秒前
JJJ发布了新的文献求助10
10秒前
眉间一把刀完成签到,获得积分10
10秒前
别封我了行吗完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472668
求助须知:如何正确求助?哪些是违规求助? 4574935
关于积分的说明 14349182
捐赠科研通 4502253
什么是DOI,文献DOI怎么找? 2467064
邀请新用户注册赠送积分活动 1454993
关于科研通互助平台的介绍 1429237