Diagnosis of Alzheimer's disease via optimized lightweight convolution-attention and structural MRI

神经影像学 计算机科学 机器学习 认知 认知障碍 人工智能 深度学习 神经科学 心理学
作者
Uttam Khatri,Goo‐Rak Kwon
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108116-108116 被引量:22
标识
DOI:10.1016/j.compbiomed.2024.108116
摘要

Alzheimer's disease (AD) poses a substantial public health challenge, demanding accurate screening and diagnosis. Identifying AD in its early stages, including mild cognitive impairment (MCI) and healthy control (HC), is crucial given the global aging population. Structural magnetic resonance imaging (sMRI) is essential for understanding the brain's structural changes due to atrophy. While current deep learning networks overlook voxel long-term dependencies, vision transformers (ViT) excel at recognizing such dependencies in images, making them valuable in AD diagnosis. Our proposed method integrates convolution-attention mechanisms in transformer-based classifiers for AD brain datasets, enhancing performance without excessive computing resources. Replacing multi-head attention with lightweight multi-head self-attention (LMHSA), employing inverted residual (IRU) blocks, and introducing local feed-forward networks (LFFN) yields exceptional results. Training on AD datasets with a gradient-centralized optimizer and Adam achieves an impressive accuracy rate of 94.31% for multi-class classification, rising to 95.37% for binary classification (AD vs. HC) and 92.15% for HC vs. MCI. These outcomes surpass existing AD diagnosis approaches, showcasing the model's efficacy. Identifying key brain regions aids future clinical solutions for AD and neurodegenerative diseases. However, this study focused exclusively on the AD Neuroimaging Initiative (ADNI) cohort, emphasizing the need for a more robust, generalizable approach incorporating diverse databases beyond ADNI in future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
贤惠的芫完成签到,获得积分10
3秒前
3秒前
c程序语言完成签到,获得积分10
7秒前
黑森林发布了新的文献求助10
8秒前
10秒前
完美世界应助澄桦采纳,获得10
11秒前
14秒前
科研通AI6.2应助外向剑通采纳,获得10
15秒前
nmamtf发布了新的文献求助10
15秒前
陈幡发布了新的文献求助10
18秒前
19秒前
19秒前
Mic应助18726094714采纳,获得10
20秒前
可爱的函函应助lucky采纳,获得10
20秒前
科研通AI6.1应助fenggggg采纳,获得10
21秒前
久ling发布了新的文献求助20
22秒前
楼楼发布了新的文献求助10
23秒前
24秒前
神采飞扬应助叶初采纳,获得10
25秒前
26秒前
26秒前
科目三应助地瓜儿采纳,获得10
28秒前
红河书人完成签到,获得积分10
28秒前
等你下课完成签到,获得积分20
29秒前
zzz小秦完成签到 ,获得积分10
29秒前
等你下课发布了新的文献求助10
32秒前
腼腆小美完成签到,获得积分10
33秒前
外向剑通发布了新的文献求助10
33秒前
Mujuas完成签到,获得积分10
34秒前
无花果应助自由的咸鱼采纳,获得10
35秒前
傲娇的凡之完成签到 ,获得积分10
37秒前
李爱国应助糖_采纳,获得10
37秒前
39秒前
小小美少女完成签到 ,获得积分10
40秒前
科研通AI6.1应助fenggggg采纳,获得10
41秒前
可爱的函函应助左岸采纳,获得10
42秒前
Txxnb发布了新的文献求助10
43秒前
44秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Using a Non-Equivalent Control Group Design in Educational Research 200
Public Health, Personal Health and Pills: Drug Entanglements and Pharmaceuticalised Governance 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5868631
求助须知:如何正确求助?哪些是违规求助? 6443554
关于积分的说明 15658817
捐赠科研通 4984121
什么是DOI,文献DOI怎么找? 2687810
邀请新用户注册赠送积分活动 1630371
关于科研通互助平台的介绍 1588488