Open-set recognition with long-tail sonar images

声纳 计算机科学 人工智能 集合(抽象数据类型) 计算机视觉 模式识别(心理学) 程序设计语言
作者
Wenpei Jiao,Jianlei Zhang,Chunyan Zhang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123495-123495 被引量:13
标识
DOI:10.1016/j.eswa.2024.123495
摘要

Current sonar image recognition methods excel in closed-set and balanced scenarios, but real underwater data often follow an open-set and long-tailed distribution, leading to misclassifications, especially among tail classes. Although open-set long-tail recognition (OLTR) tasks have received attention in natural images in recent years, there has been a lack of systematic research in sonar images. To address this gap, we present the first comprehensive study and analysis of open-set long-tail recognition in sonar images (Sonar-OLTR). In this paper, we establish a Sonar-OLTR benchmark by introducing the Nankai Sonar Image Dataset (NKSID), a new collection of 2617 real-world forward-looking sonar images. We investigate the challenges posed by long-tail distributions in existing open-set recognition (OSR) evaluation metrics for sonar images and propose two improved evaluation metrics. Using this benchmark, we conduct a thorough examination of state-of-the-art OSR, long-tail recognition, OLTR, and out-of-distribution detection algorithms. Additionally, we propose a straightforward yet effective integrated Sonar-OLTR approach as a new baseline. This method introduces a Push the right Logit Up and the wrong logit Down (PLUD) loss to increase feature space margins between known and unknown classes, as well as head and tail classes within known classes. Extensive experimental evaluation based on the benchmark demonstrates the performance and speed advantages of PLUD, providing insights for future Sonar-OLTR research. The code and dataset are publicly available at https://github.com/Jorwnpay/Sonar-OLTR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
eka123发布了新的文献求助10
1秒前
曲奇完成签到,获得积分10
1秒前
殷勤的紫槐发布了新的文献求助500
2秒前
崔啦啦完成签到,获得积分10
2秒前
彭于晏应助moxin采纳,获得10
3秒前
4秒前
Albee发布了新的文献求助10
4秒前
情怀应助Graceluxx采纳,获得10
4秒前
DJ国完成签到,获得积分10
5秒前
6秒前
SciGPT应助现代人龙采纳,获得10
7秒前
Wei_Li发布了新的文献求助10
9秒前
9秒前
style完成签到,获得积分10
9秒前
10秒前
11秒前
12秒前
Jeneration完成签到 ,获得积分10
13秒前
高大的未来完成签到 ,获得积分10
13秒前
田様应助发文章采纳,获得10
14秒前
14秒前
科研通AI6应助苗条的雨雪采纳,获得10
14秒前
善良的书南完成签到,获得积分10
15秒前
17秒前
十一发布了新的文献求助20
17秒前
17秒前
yk发布了新的文献求助10
17秒前
大胆诗云应助ko_echo采纳,获得10
18秒前
脑洞疼应助我要吃鱼采纳,获得10
18秒前
changjing5638完成签到,获得积分10
18秒前
zZZZCB发布了新的文献求助10
18秒前
滕擎完成签到,获得积分10
18秒前
Edward完成签到 ,获得积分10
19秒前
HYCT发布了新的文献求助10
19秒前
19秒前
19秒前
香草吧噗完成签到 ,获得积分10
20秒前
bosco完成签到,获得积分10
20秒前
慈祥的丹寒完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524531
求助须知:如何正确求助?哪些是违规求助? 4615119
关于积分的说明 14546245
捐赠科研通 4553050
什么是DOI,文献DOI怎么找? 2495132
邀请新用户注册赠送积分活动 1475700
关于科研通互助平台的介绍 1447456