M-Swin: Transformer-Based Multiscale Feature Fusion Change Detection Network Within Cropland for Remote Sensing Images

变更检测 遥感 计算机科学 比例(比率) 特征(语言学) 传感器融合 特征提取 图像融合 人工智能 模式识别(心理学) 地质学 图像(数学) 地图学 地理 语言学 哲学
作者
Jun Pan,Y. Bai,Qidi Shu,Zhuoer Zhang,Jiarui Hu,Mi Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:8
标识
DOI:10.1109/tgrs.2024.3374421
摘要

Remote sensing image change detection is extensively utilized in various applications in the field of remote sensing, particularly in the realm of cropland conservation, where it plays a critical role in protecting the agro-ecosystem and ensuring global food security. However, the progressive improvement in resolution and size of remote sensing imagery has led to a 'scale gap' challenge in the detection of small building changes in cropland areas. To address this challenge, an innovative multi-scale feature fusion change detection network (M-Swin) based on transformer using hierarchical windows is proposed. In order to obtain clearer edges and better separation of the change results, a novel saimese transformer encoder (MSW encoder) is proposed, which can better capture the change information in small building through hierarchical windows and fuse the multi-scale feature obtained from different windows. To effectively reduce missed and misdetected small-area of changing buildings, a novel bi-temporal image feature fusion module (BFFM) is proposed, which can enhance the features based on a priori guidance, thus improving the saliency of change regions. Additionally, a new remote sensing image change detection dataset for cropland, called LuojiaSET-CLCD, has been proposed. Experimentally demonstrates that M-Swin has good potential for highly accurate change detection of small buildings within cropland areas and outperforms several newly existing methods in three datasets (LEVIR, WHU-CD and LuojiaSET-CLCD). Our dataset will be publicly available at https://github.com/RSIIPAC/LuojiaSET-CLCD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包容一刀完成签到,获得积分20
1秒前
万能图书馆应助caffeine采纳,获得10
1秒前
1秒前
1秒前
hhhh发布了新的文献求助10
1秒前
2秒前
2秒前
MoonFlows发布了新的文献求助10
2秒前
啾比文完成签到,获得积分10
2秒前
3秒前
喵星人发布了新的文献求助10
4秒前
Hello完成签到,获得积分10
4秒前
CipherSage应助Zzz_Carlos采纳,获得10
4秒前
acc发布了新的文献求助10
5秒前
科研通AI2S应助木瓜、采纳,获得10
5秒前
luafu发布了新的文献求助10
6秒前
6秒前
某某某发布了新的文献求助10
7秒前
情怀应助琳璐酱采纳,获得10
7秒前
徐嘻嘻完成签到,获得积分10
7秒前
咖啡豆发布了新的文献求助10
8秒前
8秒前
丁丁发布了新的文献求助10
8秒前
9秒前
zijinbeier完成签到,获得积分10
9秒前
9秒前
9秒前
科研通AI2S应助苗条的幻然采纳,获得10
10秒前
11秒前
其实关注了科研通微信公众号
11秒前
12秒前
13秒前
13秒前
14秒前
wanci应助burial采纳,获得10
14秒前
14秒前
邓茗予发布了新的文献求助10
15秒前
17秒前
17秒前
17秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807343
求助须知:如何正确求助?哪些是违规求助? 3352105
关于积分的说明 10357234
捐赠科研通 3068113
什么是DOI,文献DOI怎么找? 1684847
邀请新用户注册赠送积分活动 809977
科研通“疑难数据库(出版商)”最低求助积分说明 765838