Pinwheel-shaped Convolution and Scale-based Dynamic Loss for Infrared Small Target Detection

红外线的 比例(比率) 卷积(计算机科学) 计算机科学 物理 人工智能 光学 量子力学 人工神经网络
作者
Jing Yang,Shuangli Liu,Jingjun Wu,Xue Mei Su,Nan Hai,Xueli Huang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2412.16986
摘要

These recent years have witnessed that convolutional neural network (CNN)-based methods for detecting infrared small targets have achieved outstanding performance. However, these methods typically employ standard convolutions, neglecting to consider the spatial characteristics of the pixel distribution of infrared small targets. Therefore, we propose a novel pinwheel-shaped convolution (PConv) as a replacement for standard convolutions in the lower layers of the backbone network. PConv better aligns with the pixel Gaussian spatial distribution of dim small targets, enhances feature extraction, significantly increases the receptive field, and introduces only a minimal increase in parameters. Additionally, while recent loss functions combine scale and location losses, they do not adequately account for the varying sensitivity of these losses across different target scales, limiting detection performance on dim-small targets. To overcome this, we propose a scale-based dynamic (SD) Loss that dynamically adjusts the influence of scale and location losses based on target size, improving the network's ability to detect targets of varying scales. We construct a new benchmark, SIRST-UAVB, which is the largest and most challenging dataset to date for real-shot single-frame infrared small target detection. Lastly, by integrating PConv and SD Loss into the latest small target detection algorithms, we achieved significant performance improvements on IRSTD-1K and our SIRST-UAVB dataset, validating the effectiveness and generalizability of our approach. Code -- https://github.com/JN-Yang/PConv-SDloss-Data
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阔达冰兰发布了新的文献求助10
刚刚
深情安青应助王碱采纳,获得10
刚刚
lll发布了新的文献求助10
1秒前
浮游应助花生小铺主人采纳,获得30
1秒前
123关注了科研通微信公众号
1秒前
2秒前
墨墨完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
大个应助小岚花采纳,获得10
4秒前
polaris完成签到 ,获得积分10
5秒前
6秒前
要减肥的雪巧完成签到,获得积分10
6秒前
浮游应助认真柠檬采纳,获得10
6秒前
6秒前
alhn发布了新的文献求助10
6秒前
7秒前
科研猪完成签到,获得积分10
7秒前
7秒前
NexusExplorer应助111采纳,获得10
7秒前
7秒前
Keating完成签到,获得积分20
8秒前
ding应助msk采纳,获得10
8秒前
贪玩阑香完成签到,获得积分10
9秒前
XudongHou发布了新的文献求助80
9秒前
羊羊发布了新的文献求助10
9秒前
余柳完成签到,获得积分10
9秒前
9秒前
10秒前
七月流火应助sekidesu采纳,获得100
10秒前
11秒前
12秒前
斯文败类应助yanjiusheng采纳,获得10
12秒前
荧123456完成签到,获得积分10
12秒前
道爷发布了新的文献求助10
12秒前
ccc完成签到,获得积分10
13秒前
王碱发布了新的文献求助10
13秒前
13秒前
阔达冰兰完成签到,获得积分20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490892
求助须知:如何正确求助?哪些是违规求助? 4589439
关于积分的说明 14425329
捐赠科研通 4521518
什么是DOI,文献DOI怎么找? 2477371
邀请新用户注册赠送积分活动 1462702
关于科研通互助平台的介绍 1435408