Filtered partial differential equations: a robust surrogate constraint in physics-informed deep learning framework

约束(计算机辅助设计) 偏微分方程 应用数学 物理 计算机科学 数学 量子力学 几何学
作者
D.Y. Zhang,Yuntian Chen,Shiyi Chen
出处
期刊:Journal of Fluid Mechanics [Cambridge University Press]
卷期号:999 被引量:5
标识
DOI:10.1017/jfm.2024.471
摘要

Embedding physical knowledge into neural network (NN) training has been a hot topic. However, when facing the complex real world, most of the existing methods still strongly rely on the quantity and quality of observation data. Furthermore, the NNs often struggle to converge when the solution to the real equation is very complex. Inspired by large eddy simulation in computational fluid dynamics, we propose an improved method based on filtering. We analysed the causes of the difficulties in physics-informed machine learning, and proposed a surrogate constraint (filtered partial differential equation, FPDE) of the original physical equations to reduce the influence of noisy and sparse observation data. In the noise and sparsity experiment, the proposed FPDE models (which are optimized by FPDE constraints) have better robustness than the conventional PDE models. Experiments demonstrate that the FPDE model can obtain the same quality solution with 100 % higher noise and 12 % quantity of observation data of the baseline. Besides, two groups of real measurement data are used to show the FPDE improvements in real cases. The final results show that the FPDE still gives more physically reasonable solutions when facing the incomplete equation problem and the extremely sparse and high-noise conditions. The proposed FPDE constraint is helpful for merging real-world experimental data into physics-informed training, and it works effectively in two real-world experiments: simulating cell movement in scratches and blood velocity in vessels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ren发布了新的文献求助10
刚刚
陈镕祥发布了新的文献求助10
1秒前
不不完成签到,获得积分10
1秒前
领导范儿应助xgg采纳,获得10
2秒前
2秒前
JamesPei应助科研通管家采纳,获得30
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
fan应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
4秒前
JamesPei应助科研通管家采纳,获得30
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
fan应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
4秒前
Lucas应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
大个应助科研通管家采纳,获得10
4秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
pw完成签到 ,获得积分10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
earnest发布了新的文献求助10
5秒前
6秒前
斯文败类应助liu采纳,获得10
6秒前
lisn完成签到,获得积分10
9秒前
是晓宇啊完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1200
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5837245
求助须知:如何正确求助?哪些是违规求助? 6120313
关于积分的说明 15597599
捐赠科研通 4955381
什么是DOI,文献DOI怎么找? 2671018
邀请新用户注册赠送积分活动 1616242
关于科研通互助平台的介绍 1571326