Filtered partial differential equations: a robust surrogate constraint in physics-informed deep learning framework

约束(计算机辅助设计) 偏微分方程 应用数学 物理 计算机科学 数学 量子力学 几何学
作者
D.Y. Zhang,Yuntian Chen,Shiyi Chen
出处
期刊:Journal of Fluid Mechanics [Cambridge University Press]
卷期号:999 被引量:5
标识
DOI:10.1017/jfm.2024.471
摘要

Embedding physical knowledge into neural network (NN) training has been a hot topic. However, when facing the complex real world, most of the existing methods still strongly rely on the quantity and quality of observation data. Furthermore, the NNs often struggle to converge when the solution to the real equation is very complex. Inspired by large eddy simulation in computational fluid dynamics, we propose an improved method based on filtering. We analysed the causes of the difficulties in physics-informed machine learning, and proposed a surrogate constraint (filtered partial differential equation, FPDE) of the original physical equations to reduce the influence of noisy and sparse observation data. In the noise and sparsity experiment, the proposed FPDE models (which are optimized by FPDE constraints) have better robustness than the conventional PDE models. Experiments demonstrate that the FPDE model can obtain the same quality solution with 100 % higher noise and 12 % quantity of observation data of the baseline. Besides, two groups of real measurement data are used to show the FPDE improvements in real cases. The final results show that the FPDE still gives more physically reasonable solutions when facing the incomplete equation problem and the extremely sparse and high-noise conditions. The proposed FPDE constraint is helpful for merging real-world experimental data into physics-informed training, and it works effectively in two real-world experiments: simulating cell movement in scratches and blood velocity in vessels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
soook完成签到,获得积分20
1秒前
1秒前
啦啦啦完成签到,获得积分10
3秒前
香香香发布了新的文献求助10
4秒前
4秒前
佳佳528发布了新的文献求助10
4秒前
JokerSkye完成签到,获得积分10
5秒前
soook发布了新的文献求助10
5秒前
7秒前
小薛完成签到,获得积分20
7秒前
7秒前
充电宝应助念梦采纳,获得10
9秒前
123发布了新的文献求助10
10秒前
12秒前
雾隐完成签到,获得积分10
13秒前
13秒前
13秒前
苔原猫咪甜甜圈完成签到,获得积分10
14秒前
悦耳娩发布了新的文献求助10
15秒前
xiaojie发布了新的文献求助10
17秒前
17秒前
彭于晏应助lingzhi采纳,获得10
19秒前
充电宝应助miemie66采纳,获得10
19秒前
小懒鬼发布了新的文献求助10
22秒前
英俊的铭应助zhizhiheyu采纳,获得10
22秒前
24秒前
24秒前
蓝天应助JokerSkye采纳,获得10
25秒前
26秒前
酷波er应助SimonCHEN采纳,获得10
27秒前
玉米侠完成签到 ,获得积分10
28秒前
30秒前
念梦发布了新的文献求助10
30秒前
30秒前
清仔发布了新的文献求助10
30秒前
拓跋凝海完成签到,获得积分10
30秒前
lingzhi发布了新的文献求助10
32秒前
pluto应助佳佳528采纳,获得10
33秒前
mmyhn发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1200
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5837129
求助须知:如何正确求助?哪些是违规求助? 6119167
关于积分的说明 15597231
捐赠科研通 4955248
什么是DOI,文献DOI怎么找? 2670962
邀请新用户注册赠送积分活动 1616180
关于科研通互助平台的介绍 1571276