Mn Dopant Na3Zr2Si2PO12 with Enhanced Ionic Conductivity for Quasi-Solid-State Sodium–Metal Battery

材料科学 离子电导率 掺杂剂 金属 离子键合 固态 电导率 无机化学 分析化学(期刊) 兴奋剂 物理化学 离子 冶金 电极 电解质 光电子学 物理 量子力学 化学 色谱法
作者
Yuyao Zhang,Tianyi Gao,Jiameng Yu,Yining Zhang,Yue Zhang,Shaojie Chen,Ning Xue,Xinshui Zhang,Qiong Yuan,Luyao Wang,Wei Liu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:17 (7): 10722-10731 被引量:5
标识
DOI:10.1021/acsami.4c21042
摘要

As a promising solid electrolyte, the NASICON-type Na3Zr2Si2PO12 holds excellent application in solid-state sodium-ion batteries, which are an alternative to lithium batteries. However, its insufficient conductivity is one of the key factors impeding its applications. Herein, we report Mn2+-doped Na3Zr2Si2PO12, demonstrating enhanced ionic conductivity and electrochemical properties. We systematically investigate the effect of doping content on the ionic conductivity. The results show that Na3.4Zr1.8Mn0.2Si2PO12 has an extremely high room-temperature ionic conductivity of 3.3 mS cm-1, which is 4 times that of undoped Na3Zr2Si2PO12. According to the Meyer-Nedle rule, it can be known that as the activation energy decreases, the ionic conductivity shows a gradually increasing trend. Additionally, the Na symmetric batteries using Mn2+-doped Na3Zr2Si2PO12 exhibit improved cycling performance. The quasi-solid-state sodium-metal battery using Na3V2(PO4)3 achieves a high discharge specific capacity of 91.3 mAh g-1 at 0.1C, with a high capacity retention of 92.2% after 260 cycles, far surpassing the counterpart based on undoped Na3Zr2Si2PO12. This work provides an effective strategy for enhancing the performance of Na3Zr2Si2PO12 for its application in sodium-metal batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助dfsdgyu采纳,获得10
1秒前
2秒前
2秒前
Lucas应助ZZY采纳,获得10
3秒前
huangmubao发布了新的文献求助10
3秒前
w_za完成签到,获得积分10
4秒前
李哈哈发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
童0731完成签到,获得积分10
6秒前
8秒前
shinn发布了新的文献求助10
8秒前
fuwei完成签到,获得积分10
9秒前
9秒前
华仔应助啦啦啦采纳,获得30
10秒前
舒心的雍应助研友采纳,获得10
11秒前
xiaoguang发布了新的文献求助30
11秒前
jiwn完成签到,获得积分10
11秒前
活力菠萝发布了新的文献求助10
12秒前
斯文静竹完成签到,获得积分10
13秒前
shinn发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
15秒前
zyj完成签到,获得积分10
16秒前
16秒前
Silvia发布了新的文献求助10
17秒前
小七发布了新的文献求助10
17秒前
18秒前
zxcdsw应助hengy采纳,获得10
18秒前
NexusExplorer应助自觉语兰采纳,获得10
18秒前
TT完成签到,获得积分10
18秒前
18秒前
19秒前
科研通AI6.1应助圈圈采纳,获得10
20秒前
20秒前
20秒前
TT发布了新的文献求助10
22秒前
22秒前
研友_bZzO08完成签到,获得积分10
22秒前
yiy37发布了新的文献求助10
22秒前
斯文败类应助李哈哈采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5826287
求助须知:如何正确求助?哪些是违规求助? 6014575
关于积分的说明 15569073
捐赠科研通 4946592
什么是DOI,文献DOI怎么找? 2664891
邀请新用户注册赠送积分活动 1610666
关于科研通互助平台的介绍 1565636