Understanding solid nitrogen through molecular dynamics simulations with a machine-learning potential

分子动力学 动力学(音乐) 固体氮 计算机科学 氮气 纳米技术 数据科学 人工智能 计算生物学 材料科学 化学 心理学 计算化学 生物 教育学 有机化学
作者
Marcin Kirsz,Ciprian G. Pruteanu,Peter I. C. Cooke,Graeme J. Ackland
出处
期刊:Physical review [American Physical Society]
卷期号:110 (18) 被引量:8
标识
DOI:10.1103/physrevb.110.184107
摘要

We construct a fast, transferable, general purpose, machine-learning interatomic potential suitable for large-scale simulations of N2. The potential is trained only on high quality quantum chemical molecule-molecule interactions; no condensed phase information is used. Although there are no explicit or implicit many-molecule interaction terms, the potential reproduces the experimental phase diagram including the melt curve and the molecular solid phases of nitrogen up to 10GPa. This demonstrates that many-molecule interactions are unnecessary to explain the condensed phases of N2. With increased pressure, transitions are observed from cubic (α), which optimizes quadrupole-quadrupole interactions, through tetragonal (γ), which allows more efficient packing, to monoclinic (λ), which packs still more efficiently. On heating, we obtain the hcp three-dimensional (3D) rotor phase (β) and, at pressure, the cubic δ phase which contains both 3D and 2D rotors, tetragonal δ* phase with 2D rotors, and the rhombohedral ε. Molecular dynamics demonstrates where these phases are indeed rotors, rather than frustrated order. The model supports the metastability of the complex ι phase, but not the reported existence of the wide range of bond lengths. The thermodynamic transitions involve both shifts of molecular centers and rotations of molecules: the onset of rotation is rapid, whereas motion of molecular centers is inhibited and we suggest that this is the cause of the experimentally observed sluggishness of transitions. Routine density functional theory calculations give a similar picture to the potential. Published by the American Physical Society 2024

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
chenhoe1212完成签到 ,获得积分10
2秒前
赘婿应助qq采纳,获得10
3秒前
123关注了科研通微信公众号
4秒前
CodeCraft应助跳跃的一凤采纳,获得10
5秒前
5秒前
yy完成签到 ,获得积分10
6秒前
CuSO4完成签到,获得积分10
7秒前
7秒前
小二郎应助书记采纳,获得10
8秒前
8秒前
脑洞疼应助xh采纳,获得10
9秒前
10秒前
陈一昂完成签到,获得积分20
10秒前
李健的小迷弟应助张二田采纳,获得10
10秒前
Jade完成签到 ,获得积分10
11秒前
王羲之发布了新的文献求助10
11秒前
思源应助岳麓山的月亮采纳,获得10
11秒前
芋头读文献完成签到,获得积分10
12秒前
陈一昂发布了新的文献求助10
12秒前
森活鱼块完成签到,获得积分10
12秒前
15秒前
15秒前
15秒前
LJJ完成签到,获得积分10
16秒前
16秒前
歪歪yyyyc完成签到,获得积分10
17秒前
意忆完成签到,获得积分10
17秒前
xh发布了新的文献求助10
18秒前
七音秦完成签到,获得积分10
18秒前
haonanchen完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
ymx发布了新的文献求助10
20秒前
nalanfu完成签到,获得积分10
20秒前
20秒前
Owen应助XuNan采纳,获得10
21秒前
21秒前
老艺人发布了新的文献求助10
21秒前
1111完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540496
求助须知:如何正确求助?哪些是违规求助? 4627046
关于积分的说明 14602145
捐赠科研通 4568063
什么是DOI,文献DOI怎么找? 2504344
邀请新用户注册赠送积分活动 1481989
关于科研通互助平台的介绍 1453623