Amplitude–Time Dual-View Fused EEG Temporal Feature Learning for Automatic Sleep Staging

脑电图 计算机科学 人工智能 模式识别(心理学) 可解释性 特征(语言学) 卷积神经网络 特征提取 睡眠阶段 信号(编程语言) 语音识别 卷积(计算机科学) 人工神经网络 心理学 多导睡眠图 哲学 程序设计语言 精神科 语言学
作者
Panfeng An,Jianhui Zhao,Bo Du,Wenyuan Zhao,Tingbao Zhang,Zhiyong Yuan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (5): 6492-6506 被引量:11
标识
DOI:10.1109/tnnls.2022.3210384
摘要

Electroencephalogram (EEG) plays an important role in studying brain function and human cognitive performance, and the recognition of EEG signals is vital to develop an automatic sleep staging system. However, due to the complex nonstationary characteristics and the individual difference between subjects, how to obtain the effective signal features of the EEG for practical application is still a challenging task. In this article, we investigate the EEG feature learning problem and propose a novel temporal feature learning method based on amplitude–time dual-view fusion for automatic sleep staging. First, we explore the feature extraction ability of convolutional neural networks for the EEG signal from the perspective of interpretability and construct two new representation signals for the raw EEG from the views of amplitude and time. Then, we extract the amplitude–time signal features that reflect the transformation between different sleep stages from the obtained representation signals by using conventional 1-D CNNs. Furthermore, a hybrid dilation convolution module is used to learn the long-term temporal dependency features of EEG signals, which can overcome the shortcoming that the small-scale convolution kernel can only learn the local signal variation information. Finally, we conduct attention-based feature fusion for the learned dual-view signal features to further improve sleep staging performance. To evaluate the performance of the proposed method, we test 30-s-epoch EEG signal samples for healthy subjects and subjects with mild sleep disorders. The experimental results from the most commonly used datasets show that the proposed method has better sleep staging performance and has the potential for the development and application of an EEG-based automatic sleep staging system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蒋怀寒发布了新的文献求助10
3秒前
3秒前
开放山雁完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
5秒前
科目三应助晴qq采纳,获得10
5秒前
5秒前
11完成签到,获得积分10
7秒前
shadow完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
10秒前
爆米花应助cuddly采纳,获得10
11秒前
Lixin发布了新的文献求助10
11秒前
11秒前
CHER发布了新的文献求助10
15秒前
科目三应助向着期望的采纳,获得10
18秒前
WGQ完成签到,获得积分10
19秒前
木子完成签到,获得积分10
20秒前
天天快乐应助晴qq采纳,获得10
21秒前
贾福运完成签到,获得积分10
22秒前
王旭完成签到 ,获得积分20
25秒前
斯文败类应助Dr_Marila采纳,获得10
25秒前
向着期望的完成签到,获得积分20
25秒前
柔弱飞槐完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
28秒前
aertom完成签到,获得积分10
31秒前
31秒前
34秒前
36秒前
科研通AI6.1应助勇敢的心采纳,获得10
36秒前
橙子雨发布了新的文献求助10
36秒前
星辰大海应助科研通管家采纳,获得10
37秒前
37秒前
37秒前
BowieHuang应助科研通管家采纳,获得10
37秒前
星辰大海应助科研通管家采纳,获得10
37秒前
37秒前
37秒前
李爱国应助科研通管家采纳,获得10
37秒前
传奇3应助科研通管家采纳,获得10
37秒前
BowieHuang应助科研通管家采纳,获得10
37秒前
传奇3应助科研通管家采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5813914
求助须知:如何正确求助?哪些是违规求助? 5913258
关于积分的说明 15538777
捐赠科研通 4937050
什么是DOI,文献DOI怎么找? 2658845
邀请新用户注册赠送积分活动 1605195
关于科研通互助平台的介绍 1559860