Amplitude–Time Dual-View Fused EEG Temporal Feature Learning for Automatic Sleep Staging

脑电图 计算机科学 人工智能 模式识别(心理学) 可解释性 特征(语言学) 卷积神经网络 特征提取 睡眠阶段 信号(编程语言) 语音识别 卷积(计算机科学) 人工神经网络 心理学 多导睡眠图 语言学 哲学 精神科 程序设计语言
作者
Panfeng An,Jianhui Zhao,Bo Du,Wenyuan Zhao,Tingbao Zhang,Zhiyong Yuan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (5): 6492-6506 被引量:11
标识
DOI:10.1109/tnnls.2022.3210384
摘要

Electroencephalogram (EEG) plays an important role in studying brain function and human cognitive performance, and the recognition of EEG signals is vital to develop an automatic sleep staging system. However, due to the complex nonstationary characteristics and the individual difference between subjects, how to obtain the effective signal features of the EEG for practical application is still a challenging task. In this article, we investigate the EEG feature learning problem and propose a novel temporal feature learning method based on amplitude–time dual-view fusion for automatic sleep staging. First, we explore the feature extraction ability of convolutional neural networks for the EEG signal from the perspective of interpretability and construct two new representation signals for the raw EEG from the views of amplitude and time. Then, we extract the amplitude–time signal features that reflect the transformation between different sleep stages from the obtained representation signals by using conventional 1-D CNNs. Furthermore, a hybrid dilation convolution module is used to learn the long-term temporal dependency features of EEG signals, which can overcome the shortcoming that the small-scale convolution kernel can only learn the local signal variation information. Finally, we conduct attention-based feature fusion for the learned dual-view signal features to further improve sleep staging performance. To evaluate the performance of the proposed method, we test 30-s-epoch EEG signal samples for healthy subjects and subjects with mild sleep disorders. The experimental results from the most commonly used datasets show that the proposed method has better sleep staging performance and has the potential for the development and application of an EEG-based automatic sleep staging system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧郁难胜完成签到,获得积分10
刚刚
MFNM完成签到,获得积分10
3秒前
皮皮虾完成签到 ,获得积分10
3秒前
newbiology完成签到 ,获得积分10
5秒前
ivying0209完成签到,获得积分10
7秒前
9秒前
11秒前
贺丞发布了新的文献求助10
11秒前
SF完成签到,获得积分10
12秒前
西瓜妹完成签到,获得积分10
12秒前
西门灵薇完成签到,获得积分10
16秒前
想喝冰美完成签到,获得积分10
18秒前
Nia完成签到,获得积分10
19秒前
sunwen完成签到,获得积分10
20秒前
好家伙完成签到,获得积分10
20秒前
20秒前
meimei完成签到 ,获得积分10
22秒前
上官若男应助wzc采纳,获得10
22秒前
鱼莉完成签到,获得积分10
22秒前
YingxueRen完成签到,获得积分10
23秒前
sunwen发布了新的文献求助10
23秒前
闪闪寒云完成签到 ,获得积分10
24秒前
陌shang应助科研通管家采纳,获得20
24秒前
25秒前
微笑的井完成签到 ,获得积分10
25秒前
wanci应助科研通管家采纳,获得10
25秒前
25秒前
Owen应助科研通管家采纳,获得10
25秒前
Rubby应助科研通管家采纳,获得20
25秒前
mingpu应助科研通管家采纳,获得10
25秒前
隐形曼青应助科研通管家采纳,获得10
25秒前
NexusExplorer应助科研通管家采纳,获得10
25秒前
上官若男应助科研通管家采纳,获得10
25秒前
SciGPT应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
bkagyin应助科研通管家采纳,获得10
25秒前
你的风筝应助科研通管家采纳,获得10
25秒前
mingpu应助科研通管家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4774913
求助须知:如何正确求助?哪些是违规求助? 4107547
关于积分的说明 12705485
捐赠科研通 3828552
什么是DOI,文献DOI怎么找? 2112179
邀请新用户注册赠送积分活动 1136034
关于科研通互助平台的介绍 1019650