PFEMed: Few-shot medical image classification using prior guided feature enhancement

人工智能 弹丸 模式识别(心理学) 特征(语言学) 图像(数学) 计算机视觉 一次性 计算机科学 上下文图像分类 数学 材料科学 工程类 语言学 机械工程 哲学 冶金
作者
Zhiyong Dai,Jianjun Yi,Lei Yan,Qingwen Xu,Liang Hu,Qi Zhang,Jiahui Li,Guoqiang Wang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:134: 109108-109108 被引量:58
标识
DOI:10.1016/j.patcog.2022.109108
摘要

• A novel dual-encoder architecture is introduced to extract feature representation. • To our knowledge, we are the first to investigate the proposed VAE model. • We present a novel method to initialize the priors estimated in the VAE module. • Proposed approach will help medical industry utilize knowledge from public datasets. Deep learning-based methods have recently demonstrated outstanding performance on general image classification tasks. As optimization of these methods is dependent on a large amount of labeled data, their application in medical image classification is limited. To address this issue, we propose PFEMed, a novel few-shot classification method for medical images. To extract general and specific features from medical images, this method employs a dual-encoder structure, that is, one encoder with fixed weights pre-trained on public image classification datasets and another encoder trained on the target medical dataset. In addition, we introduce a novel prior-guided Variational Autoencoder (VAE) module to enhance the robustness of the target feature, which is the concatenation of the general and specific features. Then, we match the target features extracted from both the support and query medical image samples and predict the category attribution of the query examples. Extensive experiments on several publicly available medical image datasets show that our method outperforms current state-of-the-art few-shot methods by a wide margin, particularly outperforming MetaMed on the Pap smear dataset by over 2.63%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HBY关闭了HBY文献求助
刚刚
JokerSkye发布了新的文献求助10
刚刚
Parotodus完成签到,获得积分10
3秒前
乐空思应助7086z采纳,获得50
3秒前
wanci应助BJH0314采纳,获得10
4秒前
4秒前
搜集达人应助sdsd采纳,获得10
4秒前
plh完成签到,获得积分10
4秒前
4秒前
4秒前
macarthur完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
勤劳寡妇完成签到 ,获得积分10
6秒前
6秒前
7秒前
凡事发生必有利于我完成签到,获得积分10
7秒前
四夕水窖发布了新的文献求助10
7秒前
9秒前
wyh发布了新的文献求助10
9秒前
10秒前
青阳发布了新的文献求助10
10秒前
支剑心发布了新的文献求助10
10秒前
lxz发布了新的文献求助10
11秒前
whuhustwit发布了新的文献求助10
11秒前
王富贵发布了新的文献求助10
12秒前
13秒前
13秒前
杨鑫萍完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
Purple发布了新的文献求助10
15秒前
sdsd完成签到,获得积分10
15秒前
15秒前
青鸟归发布了新的文献求助10
17秒前
阿妤完成签到 ,获得积分10
18秒前
Mandarin023完成签到,获得积分10
18秒前
totoo2021应助lwydxb12138采纳,获得30
18秒前
石人发布了新的文献求助200
18秒前
灿灿发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5797488
求助须知:如何正确求助?哪些是违规求助? 5784526
关于积分的说明 15494878
捐赠科研通 4924332
什么是DOI,文献DOI怎么找? 2650809
邀请新用户注册赠送积分活动 1598024
关于科研通互助平台的介绍 1552774