亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PFEMed: Few-shot medical image classification using prior guided feature enhancement

人工智能 弹丸 模式识别(心理学) 特征(语言学) 图像(数学) 计算机视觉 一次性 计算机科学 上下文图像分类 数学 材料科学 工程类 语言学 哲学 机械工程 冶金
作者
Zhiyong Dai,Jianjun Yi,Lei Yan,Qingwen Xu,Liang Hu,Qi Zhang,Jiahui Li,Guoqiang Wang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:134: 109108-109108 被引量:35
标识
DOI:10.1016/j.patcog.2022.109108
摘要

• A novel dual-encoder architecture is introduced to extract feature representation. • To our knowledge, we are the first to investigate the proposed VAE model. • We present a novel method to initialize the priors estimated in the VAE module. • Proposed approach will help medical industry utilize knowledge from public datasets. Deep learning-based methods have recently demonstrated outstanding performance on general image classification tasks. As optimization of these methods is dependent on a large amount of labeled data, their application in medical image classification is limited. To address this issue, we propose PFEMed, a novel few-shot classification method for medical images. To extract general and specific features from medical images, this method employs a dual-encoder structure, that is, one encoder with fixed weights pre-trained on public image classification datasets and another encoder trained on the target medical dataset. In addition, we introduce a novel prior-guided Variational Autoencoder (VAE) module to enhance the robustness of the target feature, which is the concatenation of the general and specific features. Then, we match the target features extracted from both the support and query medical image samples and predict the category attribution of the query examples. Extensive experiments on several publicly available medical image datasets show that our method outperforms current state-of-the-art few-shot methods by a wide margin, particularly outperforming MetaMed on the Pap smear dataset by over 2.63%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
wanci应助lixiaoxia采纳,获得30
7秒前
隐形的绮山关注了科研通微信公众号
13秒前
丘比特应助三岁会刺猹采纳,获得10
13秒前
15秒前
17秒前
lixiaoxia发布了新的文献求助30
21秒前
22秒前
24秒前
25秒前
26秒前
33秒前
科研通AI5应助三岁会刺猹采纳,获得10
33秒前
末末完成签到 ,获得积分10
38秒前
43秒前
44秒前
Pearl发布了新的文献求助10
47秒前
在学海中挣扎完成签到 ,获得积分10
53秒前
yangdan发布了新的文献求助10
56秒前
57秒前
58秒前
1分钟前
浪里白条发布了新的文献求助10
1分钟前
1分钟前
1分钟前
马帅帅完成签到,获得积分10
1分钟前
粗心的绾绾应助yangdan采纳,获得10
1分钟前
like完成签到,获得积分10
1分钟前
领导范儿应助浪里白条采纳,获得10
1分钟前
科目三应助like采纳,获得10
1分钟前
1分钟前
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
Su完成签到,获得积分10
1分钟前
科研宝完成签到,获得积分10
1分钟前
之外发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827166
求助须知:如何正确求助?哪些是违规求助? 3369503
关于积分的说明 10456429
捐赠科研通 3089256
什么是DOI,文献DOI怎么找? 1699723
邀请新用户注册赠送积分活动 817497
科研通“疑难数据库(出版商)”最低求助积分说明 770251