清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

[Clinical study of cervical lymph node metastasis in oral tongue squamous carcinoma by a machine learning model based on contrast-enhanced CT radiomics].

无线电技术 医学 淋巴结转移 鳞癌 对比度(视觉) 放射科 舌头 颈淋巴结 淋巴结 转移 病理 癌症 内科学 人工智能 计算机科学
作者
Haiqiao Sun,Qinghai Zhu,Huaiqi Li,Chen‐Xing Wang,Jinhai Ye
出处
期刊:PubMed 卷期号:33 (6): 608-616
链接
标识
摘要

To investigate the value of machine learning model based on enhanced CT imaging features and clinical parameters in predicting cervical lymph node metastasis in patients with tongue squamous cell carcinoma (TSCC). A total of 75 patients with TSCC who were treated in the Affiliated Stomatology Hospital of Nanjing Medical University from January 2015 to July 2022 were collected. All patients had complete clinical data, enhanced CT image data and postoperative cervical lymph node pathological examination results. All cases were randomly assigned to the training group (n=60) and the validation group (n=15) in a ratio of 8∶2. A total of 1 833 radiomics features were extracted from the venous phase image data of enhanced CT. Correlation coefficient selection and LASSO method were used for feature selection and dimensionality reduction to select the optimal combination of radiomics features. Multiple machine learning algorithm models(LR, KNN, Random Forest, Extra Trees, XGBoost and LightGBM) were used to predict cervical lymph node metastasis on the selected radiomics and clinical features. The performance of the model was evaluated by receiver operating characteristic(ROC) curve and decision curve analysis(DCA). SPSS 21.0 software package was used for data analysis. After screening and dimensionality reduction, totally 14 optimal feature combinations were obtained, and a variety of prediction models were established based on them. Among them, the KNN model showed a more balanced fitting effect in the training group and the test group, with AUC values of 0.869 and 0.861, respectively. To further improve the efficiency of the model, we integrated imaging features with patient clinical features, and the AUC value of this comprehensive model was increased to 0.893 and 0.880 in the training group and the test group, respectively. The DCA decision curve showed that compared with the simple radiomic model, the image-clinical model with the integration of clinical features showed a higher predictive effect and clinical application value. The prediction model based on enhanced CT image omics features combined with clinical parameters can effectively estimate cervical lymph node metastasis in patients with TSCC. This approach facilitates risk stratification of patients with TSCC and optimizes clinical decisions to improve treatment strategies and patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任性云朵完成签到,获得积分10
9秒前
悦耳破茧完成签到 ,获得积分10
23秒前
轩辕中蓝完成签到 ,获得积分10
25秒前
小孟吖完成签到 ,获得积分10
41秒前
生信小菜鸟完成签到 ,获得积分10
52秒前
火之高兴完成签到 ,获得积分10
54秒前
xrose完成签到 ,获得积分10
1分钟前
MM完成签到,获得积分10
1分钟前
飞翔的企鹅完成签到,获得积分10
1分钟前
lynn完成签到 ,获得积分10
1分钟前
1分钟前
墨墨完成签到 ,获得积分10
1分钟前
1分钟前
song完成签到 ,获得积分10
2分钟前
不爱吃韭菜完成签到 ,获得积分10
2分钟前
皖医梁朝伟完成签到 ,获得积分10
2分钟前
张小南完成签到,获得积分10
3分钟前
林好人完成签到,获得积分10
3分钟前
热带蚂蚁完成签到 ,获得积分10
3分钟前
superspace完成签到 ,获得积分10
3分钟前
千帆破浪完成签到 ,获得积分10
3分钟前
doreen完成签到 ,获得积分10
3分钟前
3分钟前
wjx完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
DJ_Tokyo完成签到,获得积分10
4分钟前
和平港湾完成签到,获得积分10
4分钟前
朴实乐天完成签到,获得积分10
4分钟前
鸢尾完成签到,获得积分10
4分钟前
Z小姐完成签到 ,获得积分10
5分钟前
刻苦的新烟完成签到 ,获得积分10
5分钟前
5分钟前
动漫大师发布了新的文献求助30
5分钟前
欣欣完成签到 ,获得积分10
5分钟前
宇文非笑完成签到 ,获得积分10
5分钟前
5分钟前
will完成签到 ,获得积分10
5分钟前
姚老表完成签到,获得积分10
6分钟前
重重重飞完成签到 ,获得积分10
6分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825033
求助须知:如何正确求助?哪些是违规求助? 3367346
关于积分的说明 10445271
捐赠科研通 3086738
什么是DOI,文献DOI怎么找? 1698238
邀请新用户注册赠送积分活动 816657
科研通“疑难数据库(出版商)”最低求助积分说明 769907