EMCAH-Net: an effective multi-scale context aggregation hybrid network for medical image segmentation

计算机科学 网(多面体) 背景(考古学) 分割 比例(比率) 人工智能 图像(数学) 数据挖掘 计算机视觉 地图学 地理 数学 几何学 考古
作者
Jin Yu,Rui Tian,Yu Qian,Qiang Cai,Guoqing Chao,Danqing Liu,Yanhui Guo
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:15 (4): 3064-3083
标识
DOI:10.21037/qims-24-1983
摘要

Background: Pixel-level medical image segmentation tasks are challenging due to factors such as variable target scales, complex geometric shapes, and low contrast. Although U-shaped hybrid networks have demonstrated strong performance, existing models often fail to effectively integrate the local features captured by convolutional neural networks (CNNs) with the global features provided by Transformers. Moreover, their self-attention mechanisms often lack adequate emphasis on critical spatial and channel information. To address these challenges, our goal was to develop a hybrid deep learning model that can effectively and robustly segment medical images, including but not limited to computed tomography (CT) and magnetic resonance (MR) images. Methods: We propose an effective hybrid U-shaped network, named the effective multi-scale context aggregation hybrid network (EMCAH-Net). It integrates an effective multi-scale context aggregation (EMCA) block in the backbone, along with a dual-attention augmented self-attention (DASA) block embedded in the skip connections and bottleneck layers. Aimed at the characteristics of medical images, the former block focuses on fine-grained local multi-scale feature encoding, whereas the latter enhances global representation learning by adaptively combining spatial and channel attention with self-attention. This approach not only effectively integrates local multi-scale and global features but also reinforces skip connections, thereby highlighting segmentation targets and precisely delineating boundaries. The code is publicly available at https://github.com/AloneIsland/EMCAH-Net. Results: Compared to previous state-of-the-art (SOTA) methods, the EMCAH-Net achieves outstanding performance in medical image segmentation, with Dice similarity coefficient (DSC) scores of 84.73% (+2.85), 92.33% (+0.27), and 82.47% (+0.76) on the Synapse, automated cardiac diagnosis challenge (ACDC), and digital retinal images for vessel extraction (DRIVE) datasets, respectively. Additionally, it maintains computational efficiency in terms of model parameters and floating point operations (FLOPs). For instance, EMCAH-Net surpasses TransUNet on the Synapse dataset by 7.25% in DSC while requiring only 25% of the parameters and 71% of the FLOPs. Conclusions: EMCAH-Net has demonstrated significant advantages in segmenting multi-scale, small, and boundary-blurred features in medical images. Extensive experiments on abdominal multi-organ, cardiac, and retinal vessel medical segmentation tasks confirm that EMCAH-Net surpasses previous methods, including pure CNN, pure Transformer, and hybrid architectures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jyp111应助追寻紫安采纳,获得10
刚刚
sunshine发布了新的文献求助10
1秒前
微笑的语芙完成签到,获得积分10
1秒前
共享精神应助细腻的海雪采纳,获得10
5秒前
7秒前
WittingGU完成签到,获得积分0
8秒前
善学以致用应助Dora采纳,获得10
8秒前
9秒前
万能图书馆应助Eason小川采纳,获得10
11秒前
大力发布了新的文献求助10
13秒前
15秒前
端庄的夏旋完成签到,获得积分20
15秒前
15秒前
Dora完成签到,获得积分10
18秒前
夏野完成签到,获得积分10
18秒前
搜集达人应助郭芸汐采纳,获得10
18秒前
wankai发布了新的文献求助10
19秒前
20秒前
慕青应助刘小胖采纳,获得10
20秒前
祯果粒发布了新的文献求助10
21秒前
21秒前
22秒前
23秒前
melody完成签到,获得积分10
23秒前
24秒前
24秒前
Eason小川发布了新的文献求助10
25秒前
25秒前
田様应助wankai采纳,获得10
26秒前
SciGPT应助Serein采纳,获得10
27秒前
youhao6a发布了新的文献求助10
27秒前
28秒前
飞快的薯片完成签到,获得积分10
28秒前
28秒前
jenningseastera应助Lu采纳,获得15
29秒前
嘎嘎完成签到,获得积分20
29秒前
30秒前
32秒前
34秒前
刘小胖发布了新的文献求助10
35秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800545
求助须知:如何正确求助?哪些是违规求助? 3345702
关于积分的说明 10327141
捐赠科研通 3062280
什么是DOI,文献DOI怎么找? 1680908
邀请新用户注册赠送积分活动 807268
科研通“疑难数据库(出版商)”最低求助积分说明 763614