Enhanced machine learning prediction of biochar adsorption for dyes: Parameter optimization and experimental validation

生物炭 吸附 机器学习 生物系统 计算机科学 环境科学 材料科学 工艺工程 人工智能 化学 化学工程 工程类 有机化学 热解 生物
作者
Chong Liu,P. Balasubramanian,Xuan Cuong Nguyen,Jingxian An,Sai Praneeth,Pengyan Zhang,Haiming Huang
标识
DOI:10.1007/s44246-025-00213-9
摘要

Abstract Biochar, as an eco-friendly, carbon-rich,and economical adsorbent, proven effective in removing toxic dyes from aquatic environments. This study evaluated the efficacy of machine learning (ML) models in predicting the adsorption capacity of biochar for dye removal. Nine models, namely CatBoost, XGBoost, Gradient Boosted Decision Trees, Random Forest, Histogram-Based Gradient Boosting, Kernel Extreme Learning Machine, Kriging, Light Gradient Boosting Machine, and AdaBoost, were deployed to ascertain their predictive accuracies. The CatBoost model was highlighted for its exceptional performance, achieving the highest R 2 (0.9880) and the lowest RMSE (0.0839). The stability of the model was affirmed through residual analysis and random partitioning dataset. A detailed feature importance analysis revealed that experimental conditions predominantly affect adsorption, accounting for 50.8%, followed by biochar characteristics (34.1%) and dye types (15.1%). The most significant feature impacting dye adsorption was identified as the C 0 through SHapley Additive exPlanations. Partial dependence plots were used further to illustrate the influence of features on the predictive model. Additionally, experimental validation of the ML approach yielded R 2 of 0.9037, reinforcing the applicability of the model. This study adds to supportive evidence of the use of ML for the prediction of adsorption capacity and encourages the development of user-friendly software, using PySimpleGUI, opening new paths to advanced data-driven methods in environmental engineering. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Maestro_S应助科研通管家采纳,获得10
刚刚
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
Maestro_S应助科研通管家采纳,获得10
刚刚
1秒前
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
辛勤的泽洋完成签到 ,获得积分10
1秒前
高大以南完成签到,获得积分10
9秒前
LZX完成签到 ,获得积分10
11秒前
LiLi完成签到 ,获得积分10
13秒前
科研通AI6.1应助郑浩采纳,获得10
13秒前
nav完成签到 ,获得积分10
15秒前
共享精神应助liuq采纳,获得10
17秒前
19秒前
22秒前
南桥发布了新的文献求助10
23秒前
番茄市长发布了新的文献求助10
25秒前
xin完成签到 ,获得积分10
27秒前
28秒前
香蕉觅云应助南桥采纳,获得10
28秒前
不安青牛应助超帅的开山采纳,获得10
28秒前
陈曦读研版完成签到 ,获得积分10
29秒前
31秒前
32秒前
量子星尘发布了新的文献求助10
32秒前
碧蓝可仁完成签到 ,获得积分10
32秒前
超帅的开山完成签到,获得积分10
35秒前
36秒前
板栗完成签到,获得积分10
37秒前
阿龙完成签到,获得积分10
42秒前
量子星尘发布了新的文献求助10
42秒前
超体完成签到 ,获得积分10
44秒前
潇洒的天与完成签到,获得积分10
44秒前
44秒前
热心不凡完成签到,获得积分10
46秒前
LYQ完成签到 ,获得积分10
47秒前
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5796310
求助须知:如何正确求助?哪些是违规求助? 5775488
关于积分的说明 15491672
捐赠科研通 4923303
什么是DOI,文献DOI怎么找? 2650314
邀请新用户注册赠送积分活动 1597536
关于科研通互助平台的介绍 1552189