亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data driven design of ultra high performance concrete prospects and application

计算机科学
作者
Bryan K. Aylas-Paredes,Taihao Han,Advaith Neithalath,Jie Huang,Ashutosh Goel,Aditya Kumar,Narayanan Neithalath
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1)
标识
DOI:10.1038/s41598-025-94484-2
摘要

Ultra-high performance concrete (UHPC) is a specialized class of cementitious composites that is increasingly used in various applications, including bridge decks, connections between precast components, piers, columns, overlays, and the repair and strengthening of bridge elements. The mechanical and durability properties of UHPC are significantly influenced by factors such as low water-to-binder ratios, the inclusion of supplementary cementitious materials (SCMs), and fiber reinforcement. Machine learning (ML) has been employed to predict the performance of UHPC and optimize its mixture designs by using various raw materials. This study first provides a comprehensive review of ML applications in UHPC, focusing on predicting workability, mechanical, and thermal properties. The use of data crossing, generative AI, physics-guided ML models, and field-applicable software are explored as practical directions for future research. This study also develops ML models to predict the compressive strength of UHPC by using a database containing 1300 data-records. The influence of various input variables is evaluated using SHapley Additive exPlanations (SHAP), revealing that chemical compositions have relatively minor impacts, given the material types used. By excluding insignificant variables, the models enhance both efficiency and accuracy in predicting strength. This advancement facilitates optimized material design and performance prediction while reducing the experimental workload required to inform ML models. Adding more diverse data to the database could further enhance the prediction performance and generalizability of the proposed ML models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
量子星尘发布了新的文献求助10
6秒前
19秒前
狮子发布了新的文献求助10
26秒前
38秒前
量子星尘发布了新的文献求助10
45秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
scm应助科研通管家采纳,获得30
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI5应助苏哲采纳,获得10
1分钟前
1分钟前
wangjm发布了新的文献求助10
1分钟前
wangjm完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Joeswith完成签到,获得积分10
2分钟前
无花果应助勤恳的依珊采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
勤恳的依珊完成签到,获得积分10
2分钟前
2分钟前
不去明知山完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
wang完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
YifanWang应助科研通管家采纳,获得10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
烟消云散完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862439
求助须知:如何正确求助?哪些是违规求助? 3404971
关于积分的说明 10642047
捐赠科研通 3128215
什么是DOI,文献DOI怎么找? 1725181
邀请新用户注册赠送积分活动 830822
科研通“疑难数据库(出版商)”最低求助积分说明 779454