二硫仑
心磷脂
线粒体
生物
细胞色素c氧化酶
酵母
氧化磷酸化
离子载体
生物化学
细胞生物学
线粒体内膜
酿酒酵母
细胞器
膜
磷脂
作者
Claire Almyre,Nolwenn Bounaix,François Godard,Olivier R. Baris,Anne-Louise Cayer,Elodie Sardin,Marine Bouhier,A. Hoarau,Laetitia Dard,John P. Richard,Vanessa Bergeron,Aurélie Renaud,Nadège Loaëc,Naïg Guéguen,Valérie Desquiret‐Dumas,Bénédicte Lelièvre,Aurore Inisan,Cristina Panozzo,Gwendal Dujardin,Marc Blondel
摘要
Abstract The copper ionophore disulfiram (DSF) is commonly used to treat chronic alcoholism and has potential anti-cancer activity. Using a yeast-based screening assay of FDA-approved compounds, DSF was herein identified for its ability to improve oxidative phosphorylation-dependent growth of various yeast models of mitochondrial diseases caused by a wide range of defects in ATP synthase, complexes III and IV, cardiolipin remodeling, maintenance and translation of the mitochondrial genome. This compound also showed beneficial effects in cells derived from patients suffering from Barth or MELAS syndromes, two mitochondrial diseases associated respectively with a lack in cardiolipin remodeling and protein synthesis inside the organelle. We provide evidence that the rescuing activity of DSF results from its ability to transport copper ions across biological membranes. Indeed, other copper ionophores (pyrithione and elesclomol) and supplementation of the growth media with copper ions had also beneficial effects in yeast and human cells with dysfunctional mitochondria. Our data suggest that the copper-dependent rescuing activity in these cells results from a better capacity to assemble cytochrome c oxidase. Altogether, our findings hold promise for the development of new therapeutic strategies for mitochondrial disorders.
科研通智能强力驱动
Strongly Powered by AbleSci AI