In silico prediction method for plant Nucleotide‐binding leucine‐rich repeat‐ and pathogen effector interactions

生物信息学 效应器 计算生物学 病菌 富含亮氨酸重复 生物 核苷酸 遗传学 细胞生物学 基因
作者
Alicia Fick,Jacobus Lukas Marthinus Fick,Velushka Swart,Noëlani van den Berg
出处
期刊:Plant Journal [Wiley]
卷期号:122 (2)
标识
DOI:10.1111/tpj.70169
摘要

SUMMARY Plant Nucleotide‐binding leucine‐rich repeat (NLR) proteins play a crucial role in effector recognition and activation of Effector triggered immunity following pathogen infection. Genome sequencing advancements have led to the identification of a myriad of NLRs in numerous agriculturally important plant species. However, deciphering which NLRs recognize specific pathogen effectors remains challenging. Predicting NLR–effector interactions in silico will provide a more targeted approach for experimental validation, critical for elucidating function, and advancing our understanding of NLR‐triggered immunity. In this study, NLR–effector protein complex structures were predicted using AlphaFold2‐Multimer for all experimentally validated NLR–effector interactions reported in literature. Binding affinities‐ and energies were predicted using 97 machine learning models from Area‐Affinity. We show that AlphaFold2‐Multimer predicted structures have acceptable accuracy and can be used to investigate NLR–effector interactions in silico . Binding affinities for 58 NLR–effector complexes ranged between −8.5 and −10.6 log(K), and binding energies between −11.8 and −14.4 kcal/mol −1 , depending on the Area‐Affinity model used. For 2427 “forced” NLR–effector complexes, these estimates showed larger variability, enabling identification of novel NLR–effector interactions with 99% accuracy using an Ensemble machine learning model. The narrow range of binding energies‐ and affinities for “true” interactions suggest a specific change in Gibbs free energy, and thus conformational change, is required for NLR activation. This is the first study to provide a method for predicting NLR–effector interactions, applicable to all pathosystems. Finally, the NLR–Effector Interaction Classification (NEIC) resource can streamline research efforts by identifying NLRs important for plant–pathogen resistance, advancing our understanding of plant immunity.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
余悸完成签到,获得积分10
1秒前
顺心人达完成签到 ,获得积分10
2秒前
科研通AI6.2应助枯夏采纳,获得30
3秒前
6秒前
aulinwl发布了新的文献求助10
6秒前
9秒前
10秒前
10秒前
tlm发布了新的文献求助10
11秒前
JJ发布了新的文献求助10
11秒前
舒适的白开水完成签到,获得积分10
12秒前
12秒前
12秒前
小马甲应助咸鱼不翻身采纳,获得10
15秒前
时尚嚓茶发布了新的文献求助10
16秒前
moMo发布了新的文献求助10
17秒前
忆仙姿完成签到,获得积分10
17秒前
18秒前
阿花发布了新的文献求助10
18秒前
陈皮糖不酸完成签到 ,获得积分10
20秒前
枯夏发布了新的文献求助30
21秒前
22秒前
充电宝应助坚强的初夏采纳,获得10
23秒前
Cell完成签到 ,获得积分10
23秒前
石东明完成签到 ,获得积分10
26秒前
希望天下0贩的0应助moMo采纳,获得10
26秒前
ll完成签到 ,获得积分10
27秒前
zzz完成签到 ,获得积分10
28秒前
HMG1COA完成签到 ,获得积分10
28秒前
邹邹邹发布了新的文献求助10
29秒前
Akim应助李哈哈采纳,获得10
34秒前
飞飞完成签到 ,获得积分10
34秒前
ZiyuanLi完成签到 ,获得积分10
34秒前
不可以哦完成签到 ,获得积分10
35秒前
DT关闭了DT文献求助
36秒前
仰勒完成签到 ,获得积分10
37秒前
星辰大海应助冲锋猛男林采纳,获得10
38秒前
orixero应助keke采纳,获得10
41秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Clinical Efficacy of the Hydrogel Patch Containing Loxoprofen Sodium (LX-A) on Osteoarthritis of the Knee-A Randomized, Open Label Clinical Study with Ketoprofen Patch-(Phase III Therapeutic Confirmatory Study) 410
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5844559
求助须知:如何正确求助?哪些是违规求助? 6191395
关于积分的说明 15614671
捐赠科研通 4961237
什么是DOI,文献DOI怎么找? 2674789
邀请新用户注册赠送积分活动 1619617
关于科研通互助平台的介绍 1574891