已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

In silico prediction method for plant Nucleotide‐binding leucine‐rich repeat‐ and pathogen effector interactions

生物信息学 效应器 计算生物学 病菌 富含亮氨酸重复 生物 核苷酸 遗传学 细胞生物学 基因
作者
Alicia Fick,Jacobus Lukas Marthinus Fick,Velushka Swart,Noëlani van den Berg
出处
期刊:Plant Journal [Wiley]
卷期号:122 (2)
标识
DOI:10.1111/tpj.70169
摘要

SUMMARY Plant Nucleotide‐binding leucine‐rich repeat (NLR) proteins play a crucial role in effector recognition and activation of Effector triggered immunity following pathogen infection. Genome sequencing advancements have led to the identification of a myriad of NLRs in numerous agriculturally important plant species. However, deciphering which NLRs recognize specific pathogen effectors remains challenging. Predicting NLR–effector interactions in silico will provide a more targeted approach for experimental validation, critical for elucidating function, and advancing our understanding of NLR‐triggered immunity. In this study, NLR–effector protein complex structures were predicted using AlphaFold2‐Multimer for all experimentally validated NLR–effector interactions reported in literature. Binding affinities‐ and energies were predicted using 97 machine learning models from Area‐Affinity. We show that AlphaFold2‐Multimer predicted structures have acceptable accuracy and can be used to investigate NLR–effector interactions in silico . Binding affinities for 58 NLR–effector complexes ranged between −8.5 and −10.6 log(K), and binding energies between −11.8 and −14.4 kcal/mol −1 , depending on the Area‐Affinity model used. For 2427 “forced” NLR–effector complexes, these estimates showed larger variability, enabling identification of novel NLR–effector interactions with 99% accuracy using an Ensemble machine learning model. The narrow range of binding energies‐ and affinities for “true” interactions suggest a specific change in Gibbs free energy, and thus conformational change, is required for NLR activation. This is the first study to provide a method for predicting NLR–effector interactions, applicable to all pathosystems. Finally, the NLR–Effector Interaction Classification (NEIC) resource can streamline research efforts by identifying NLRs important for plant–pathogen resistance, advancing our understanding of plant immunity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ewyzero应助chaoswu采纳,获得10
1秒前
年轻代丝发布了新的文献求助10
3秒前
3秒前
JamesPei应助小章鱼采纳,获得10
3秒前
qhcaywy完成签到,获得积分10
5秒前
羊羊发布了新的文献求助10
7秒前
7秒前
Cuisine完成签到 ,获得积分10
10秒前
qhcaywy发布了新的文献求助30
10秒前
旺仔小秃头完成签到,获得积分10
11秒前
桃桃子完成签到,获得积分10
12秒前
chenjzhuc应助科研通管家采纳,获得30
15秒前
彭于晏应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
15秒前
猪猪hero应助科研通管家采纳,获得10
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
16秒前
科研通AI5应助WUYONGSHUAI采纳,获得10
18秒前
刘小源完成签到 ,获得积分10
18秒前
19秒前
20秒前
隐形曼青应助qhcaywy采纳,获得30
21秒前
知性的剑身完成签到,获得积分10
22秒前
小彭友完成签到,获得积分10
23秒前
weiwenzuo发布了新的文献求助10
27秒前
爱爱完成签到 ,获得积分10
28秒前
30秒前
怕黑的听筠完成签到,获得积分20
37秒前
37秒前
adam完成签到 ,获得积分10
37秒前
俭朴的乐巧完成签到 ,获得积分20
39秒前
沉静白翠发布了新的文献求助10
39秒前
小章鱼发布了新的文献求助10
42秒前
顺利山柏完成签到 ,获得积分10
42秒前
子訡完成签到,获得积分10
48秒前
HYQ完成签到 ,获得积分10
50秒前
南风发布了新的文献求助30
52秒前
n01lYA完成签到,获得积分10
55秒前
肖肖肖完成签到 ,获得积分10
58秒前
李健应助阿辽采纳,获得10
59秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819819
求助须知:如何正确求助?哪些是违规求助? 3362720
关于积分的说明 10418473
捐赠科研通 3080964
什么是DOI,文献DOI怎么找? 1694903
邀请新用户注册赠送积分活动 814788
科研通“疑难数据库(出版商)”最低求助积分说明 768494