亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

In silico prediction method for plant Nucleotide‐binding leucine‐rich repeat‐ and pathogen effector interactions

生物信息学 效应器 计算生物学 病菌 富含亮氨酸重复 生物 核苷酸 遗传学 细胞生物学 基因
作者
Alicia Fick,Jacobus Lukas Marthinus Fick,Velushka Swart,Noëlani van den Berg
出处
期刊:Plant Journal [Wiley]
卷期号:122 (2)
标识
DOI:10.1111/tpj.70169
摘要

SUMMARY Plant Nucleotide‐binding leucine‐rich repeat (NLR) proteins play a crucial role in effector recognition and activation of Effector triggered immunity following pathogen infection. Genome sequencing advancements have led to the identification of a myriad of NLRs in numerous agriculturally important plant species. However, deciphering which NLRs recognize specific pathogen effectors remains challenging. Predicting NLR–effector interactions in silico will provide a more targeted approach for experimental validation, critical for elucidating function, and advancing our understanding of NLR‐triggered immunity. In this study, NLR–effector protein complex structures were predicted using AlphaFold2‐Multimer for all experimentally validated NLR–effector interactions reported in literature. Binding affinities‐ and energies were predicted using 97 machine learning models from Area‐Affinity. We show that AlphaFold2‐Multimer predicted structures have acceptable accuracy and can be used to investigate NLR–effector interactions in silico . Binding affinities for 58 NLR–effector complexes ranged between −8.5 and −10.6 log(K), and binding energies between −11.8 and −14.4 kcal/mol −1 , depending on the Area‐Affinity model used. For 2427 “forced” NLR–effector complexes, these estimates showed larger variability, enabling identification of novel NLR–effector interactions with 99% accuracy using an Ensemble machine learning model. The narrow range of binding energies‐ and affinities for “true” interactions suggest a specific change in Gibbs free energy, and thus conformational change, is required for NLR activation. This is the first study to provide a method for predicting NLR–effector interactions, applicable to all pathosystems. Finally, the NLR–Effector Interaction Classification (NEIC) resource can streamline research efforts by identifying NLRs important for plant–pathogen resistance, advancing our understanding of plant immunity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
7秒前
LIUDEHUA发布了新的文献求助10
14秒前
千里草完成签到,获得积分10
30秒前
44秒前
汉字发布了新的文献求助10
45秒前
yindi1991完成签到 ,获得积分10
54秒前
56秒前
zyp发布了新的文献求助10
59秒前
汉字完成签到,获得积分10
59秒前
小马甲应助三微之廿采纳,获得10
1分钟前
1分钟前
1分钟前
三微之廿发布了新的文献求助10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
1分钟前
情怀应助三微之廿采纳,获得10
1分钟前
mengliu完成签到,获得积分10
1分钟前
Hello应助三微之廿采纳,获得10
2分钟前
伏城完成签到 ,获得积分10
2分钟前
dx完成签到,获得积分10
2分钟前
debu9完成签到,获得积分10
2分钟前
2分钟前
2分钟前
三微之廿发布了新的文献求助10
2分钟前
环走鱼尾纹完成签到 ,获得积分10
2分钟前
核桃应助yaoyao采纳,获得30
2分钟前
3分钟前
3分钟前
三微之廿发布了新的文献求助10
3分钟前
3分钟前
乐乐应助科研通管家采纳,获得10
3分钟前
Natsu应助科研通管家采纳,获得10
3分钟前
完美世界应助科研通管家采纳,获得10
3分钟前
上官若男应助陈诚1111采纳,获得10
3分钟前
3分钟前
深渊完成签到 ,获得积分10
3分钟前
陈诚1111发布了新的文献求助10
3分钟前
3分钟前
3分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4124380
求助须知:如何正确求助?哪些是违规求助? 3662291
关于积分的说明 11590322
捐赠科研通 3362584
什么是DOI,文献DOI怎么找? 1847662
邀请新用户注册赠送积分活动 912036
科研通“疑难数据库(出版商)”最低求助积分说明 827849