A Multi-source Precipitation Data Fusion Model for Qinghai Province Based on 3D CNN and Bidirectional ConvLSTM

降水 融合 气象学 计算机科学 遥感 环境科学 气候学 地质学 地理 哲学 语言学
作者
Shaojie You,Xiaodan Zhang,Hongyu Wang,Quan Chen,Tong Zhao,Chang Liu,Wei Huo,Qiyuan Zhang,Naihao Hu
出处
期刊:Journal of Hydrometeorology [American Meteorological Society]
被引量:1
标识
DOI:10.1175/jhm-d-24-0053.1
摘要

Abstract Accurate precipitation estimation is crucial for water resource management, ecological modeling, and natural disaster prevention. Although there are various methods for integrating precipitation data from different sources with observed data, many of them only focus on spatial or temporal correlations, neglecting the potential improvement in precipitation estimation brought about by considering spatio-temporal correlations. In this study, we propose a deep learning-based multi-source precipitation fusion model (MPFM), which simultaneously utilizes the spatial-temporal correlations of ERA5, IMERG, and GLDAS for fusion. Unlike existing methods, our model integrates both spatial and temporal correlations, enhancing fusion by utilizing spatio-temporal information more fully. The MPFM comprises a 3D Convolutional Neural Network (3D CNN) to extract the spatio-temporal features of precipitation data and a bidirectional Convolutional Long Short-Term Memory Neural Network (ConvLSTM) to capture the temporal and spatial dependencies. Compared to other models, including deep learning methods (3D CNN and bidirectional ConvLSTM), traditional machine learning methods (Multi-Layer Perceptron, eXtreme Gradient Boost, and Random Forest), and linear fusion methods (one outlier-removed-average, optimized weighted average, and inverse error variance weighting), the MPFM significantly outperforms in independent validation tests. The generated high-precision daily precipitation dataset for 2013–2017 at a 0.01°resolution exhibits substantially improved accuracy over raw data, with a 17.16% and 25.66% reduction in mean absolute error (MAE) and root mean square error (RMSE), respectively, and a 20.35% increase in correlation coefficient (CC) compared with the best-performing raw data (IMERG). This dataset can offer dependable data support for hydrological or climate ecology-related studies in Qinghai Province.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毅虹完成签到,获得积分10
2秒前
2秒前
3秒前
成长中发布了新的文献求助10
5秒前
6秒前
务实映之完成签到,获得积分10
6秒前
Daisy完成签到,获得积分10
7秒前
zicong完成签到,获得积分10
8秒前
asdfqwer发布了新的文献求助10
8秒前
大曼曼曼曼完成签到,获得积分10
10秒前
棋子一小枚完成签到,获得积分20
10秒前
jia完成签到,获得积分10
13秒前
Ava应助cherry采纳,获得10
14秒前
爆米花应助小栗采纳,获得10
14秒前
包容的小蚂蚁完成签到,获得积分10
15秒前
Criminology34应助tara采纳,获得10
15秒前
wzf完成签到 ,获得积分10
18秒前
李健应助努力的小韩采纳,获得10
23秒前
Sunshine应助根根采纳,获得20
24秒前
28秒前
延娜完成签到,获得积分10
30秒前
咖喱鸡完成签到,获得积分10
32秒前
TYM发布了新的文献求助10
32秒前
舒服的八宝粥完成签到 ,获得积分10
33秒前
好晒发布了新的文献求助10
33秒前
jia关注了科研通微信公众号
33秒前
感谢有你完成签到 ,获得积分10
35秒前
35秒前
35秒前
35秒前
35秒前
碧蓝笑槐完成签到,获得积分10
36秒前
36秒前
在水一方应助科研通管家采纳,获得10
36秒前
杨华启应助科研通管家采纳,获得10
36秒前
星辰大海应助科研通管家采纳,获得20
36秒前
Hello应助科研通管家采纳,获得10
36秒前
Lucas应助舒适的尔容采纳,获得10
37秒前
陈阳发布了新的文献求助20
43秒前
Findasheep完成签到,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5869356
求助须知:如何正确求助?哪些是违规求助? 6451604
关于积分的说明 15660816
捐赠科研通 4985139
什么是DOI,文献DOI怎么找? 2688283
邀请新用户注册赠送积分活动 1630756
关于科研通互助平台的介绍 1588831