Intratumoral microbiota-aided fusion radiomics model for predicting tumor response to neoadjuvant chemoimmunotherapy in triple-negative breast cancer

化学免疫疗法 乳腺癌 无线电技术 医学 新辅助治疗 三阴性乳腺癌 肿瘤科 癌症研究 三重阴性 癌症 内科学 免疫疗法 放射科
作者
Yilin Chen,Yu‐Hong Huang,Wei Li,Teng Zhu,Minyi Cheng,Cangui Wu,Liulu Zhang,Hao Peng,Kun Wang
出处
期刊:Journal of Translational Medicine [BioMed Central]
卷期号:23 (1)
标识
DOI:10.1186/s12967-025-06369-7
摘要

Neoadjuvant chemoimmunotherapy (NACI) has emerged as the standard treatment for early-stage triple-negative breast cancer (TNBC). However, reliable biomarkers for identifying patients who are likely to benefit from NACI are lacking. This study aims to develop an intratumoral microbiota-aided radiomics model for predicting pathological complete response (pCR) in patients with TNBC. Intratumoral microbiota are characterized by 16S rDNA sequencing and quantified through experimental assays. Single-cell RNA sequencing is performed to analyze the tumor microenvironment of tumors with various responses to NACI. Radiomics features are extracted from tumor regions on longitudinal magnetic resonance images (MRIs) scanned before and after NACI in the training set. On the basis of treatment response (pCR or non-pCR) and intratumoral microbiota scoring, we select key radiomics features and construct a fusion model integrating multi-timepoint (pre-NACI and post-NACI) MRI to predict the efficacy of immunotherapy, followed by independent external validation. A total of 124 patients are enrolled, with 88 in the training set and 36 in the validation set. Tumors from patients who achieves pCR present a significantly greater intratumoral microbiota load than tumors from patients who achieve non-pCR (p < 0.05). Additionally, tumors in non-pCR group exhibit greater infiltration of tumor-associated SPP1+ macrophages, which is negatively correlated with the microbiota load. On the basis of intratumoral microbiota scoring, we select 17 radiomics features and use them to construct the fusion radiomics model. The fusion model achieves the highest AUC of 0.945 in the training set, outperforming pre-NACI (AUC = 0.875) and post-NACI (AUC = 0.917) models. In the validation set, this model maintains a superior AUC of 0.873, surpassing those of pre-NACI (AUC = 0.769) and post-NACI (AUC = 0.802) models. Clinically, the fusion model distinguishes patients who achieve pCR from those who do not with an accuracy of 77.8%. Decision curve analysis demonstrates the superior net clinical benefit of this model across varying risk thresholds. Our intratumoral microbiota-aided radiomics model could serve as a powerful and noninvasive tool for predicting the response of patients with early-stage TNBC to NACI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦天寿完成签到 ,获得积分10
1秒前
5秒前
5秒前
10秒前
11秒前
你好好好发布了新的文献求助10
11秒前
SciGPT应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
13秒前
daniel完成签到,获得积分10
14秒前
顾矜应助勤恳的宛菡采纳,获得10
15秒前
秀儿发布了新的文献求助10
16秒前
万能图书馆应助你好好好采纳,获得10
16秒前
wtjhhh发布了新的文献求助30
17秒前
无花果应助孤独曼冬采纳,获得10
18秒前
爆米花应助秋天不回来采纳,获得10
18秒前
shouyu29应助默默的巧荷采纳,获得10
18秒前
郝老头完成签到,获得积分10
22秒前
学术小天才完成签到,获得积分10
22秒前
22秒前
22秒前
Snowychen发布了新的文献求助10
23秒前
23秒前
26秒前
26秒前
阔达碧空发布了新的文献求助10
27秒前
jia发布了新的文献求助10
27秒前
二掌柜发布了新的文献求助10
28秒前
guyankuan完成签到,获得积分10
28秒前
29秒前
Teddyboy发布了新的文献求助10
32秒前
32秒前
32秒前
闪闪乘风完成签到 ,获得积分10
32秒前
lilei关注了科研通微信公众号
33秒前
34秒前
gemini0615发布了新的文献求助30
35秒前
二掌柜完成签到,获得积分10
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784087
求助须知:如何正确求助?哪些是违规求助? 3329170
关于积分的说明 10240662
捐赠科研通 3044703
什么是DOI,文献DOI怎么找? 1671236
邀请新用户注册赠送积分活动 800191
科研通“疑难数据库(出版商)”最低求助积分说明 759222