已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Advancements and Challenges in Photovoltaic Power Forecasting: A Comprehensive Review

光伏系统 功率(物理) 工程类 电气工程 物理 量子力学
作者
Paolo Di Leo,Alessandro Ciocia,Gabriele Malgaroli,Filippo Spertino
标识
DOI:10.20944/preprints202502.2234.v1
摘要

The fast growth of photovoltaic power generation requires dependable forecasting methods to support efficient solar energy power integration into power systems. This study conducts an up-to-date systemized analysis of different models and methods used for photovoltaic power prediction. It begins with a new taxonomy, classifying PV forecasting models according to time horizon, architectures, and selection criteria matched to certain application areas. An overview of the most popular heterogeneous forecasting techniques, including physical models, statistical methodologies, machine learning algorithms, and hybrid approaches, is provided; their respective advantages and disadvantages are put into perspective based on different forecasting tasks. The paper also explores advanced model optimization methodologies, achieving hyperparameter tuning, feature selection, and the use of evolutionary and swarm intelligence algorithms, which have shown promise in enhancing the accuracy and efficiency of PV power forecasting models. The review includes a detailed examination of performance metrics and frameworks, as well as the consequences of different weather conditions affecting renewable energy generation and the operational as well as economic implications of forecasting performance. The paper also highlights recent advancements in the field, including the use of deep learning architectures, the incorporation of diverse data sources, and the development of real-time and on-demand forecasting solutions. Finally, the paper identifies key challenges and future research directions, emphasizing the need for improved model adaptability, data quality, and computational efficiency to support the large-scale integration of PV power into future energy systems. By providing a holistic and critical assessment of the PV power forecasting landscape, this review aims to serve as a valuable resource for researchers, practitioners, and decision-makers working towards the sustainable and reliable deployment of solar energy worldwide.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助火星上的睫毛膏采纳,获得10
1秒前
Beracah发布了新的文献求助10
3秒前
科研通AI6.1应助王先生采纳,获得30
3秒前
帝蒼完成签到,获得积分10
5秒前
hhh发布了新的文献求助10
6秒前
jj完成签到,获得积分10
6秒前
6秒前
ldc发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
圈圈发布了新的文献求助10
7秒前
千山孤风完成签到,获得积分10
8秒前
田様应助嘻嘻哈哈采纳,获得10
9秒前
sunny完成签到,获得积分20
9秒前
溪流冲浪完成签到,获得积分10
11秒前
雨辰完成签到,获得积分10
11秒前
火星上的睫毛膏完成签到,获得积分10
11秒前
12秒前
12秒前
科研通AI6.1应助77采纳,获得10
12秒前
小二郎应助小慧儿采纳,获得10
13秒前
16秒前
傲雪灵猫完成签到,获得积分10
16秒前
17秒前
17秒前
wxwxwx77发布了新的文献求助10
19秒前
小二郎应助ldc采纳,获得10
19秒前
Allowsany完成签到,获得积分10
20秒前
木木发布了新的文献求助10
21秒前
小明发布了新的文献求助10
21秒前
21秒前
wxwxwx77完成签到,获得积分10
24秒前
听风完成签到 ,获得积分10
25秒前
Pettina完成签到 ,获得积分10
26秒前
321发布了新的文献求助10
27秒前
27秒前
ldc完成签到,获得积分10
29秒前
29秒前
31秒前
msp发布了新的文献求助10
32秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771799
求助须知:如何正确求助?哪些是违规求助? 5593934
关于积分的说明 15428394
捐赠科研通 4905053
什么是DOI,文献DOI怎么找? 2639200
邀请新用户注册赠送积分活动 1587067
关于科研通互助平台的介绍 1541958