Predicting transient ischemic attack risk in patients with mild carotid stenosis using machine learning and CT radiomics

医学 颈动脉内膜切除术 狭窄 随机森林 计算机断层血管造影 放射科 逻辑回归 颈内动脉 人工智能 血管造影 内科学 计算机科学
作者
Hai Xia,Lei Yuan,Wei Zhao,Chenglei Zhang,Lingfeng Zhao,Jialin Hou,Yancheng Luan,Yuxin Bi,Yaoyu Feng
出处
期刊:Frontiers in Neurology [Frontiers Media]
卷期号:14 被引量:12
标识
DOI:10.3389/fneur.2023.1105616
摘要

This study aims to establish a radiomics-based machine learning model that predicts the risk of transient ischemic attack in patients with mild carotid stenosis (30-50% North American Symptomatic Carotid Endarterectomy Trial) using extracted computed tomography radiomics features and clinical information.A total of 179 patients underwent carotid computed tomography angiography (CTA), and 219 carotid arteries with a plaque at the carotid bifurcation or proximal to the internal carotid artery were selected. The patients were divided into two groups; patients with symptoms of transient ischemic attack after CTA and patients without symptoms of transient ischemic attack after CTA. Then we performed random sampling methods stratified by the predictive outcome to obtain the training set (N = 165) and testing set (N = 66). 3D Slicer was employed to select the site of plaque on the computed tomography image as the volume of interest. An open-source package PyRadiomics in Python was used to extract radiomics features from the volume of interests. The random forest and logistic regression models were used to screen feature variables, and five classification algorithms were used, including random forest, eXtreme Gradient Boosting, logistic regression, support vector machine, and k-nearest neighbors. Data on radiomic feature information, clinical information, and the combination of these pieces of information were used to generate the model that predicts the risk of transient ischemic attack in patients with mild carotid artery stenosis (30-50% North American Symptomatic Carotid Endarterectomy Trial).The random forest model that was built based on the radiomics and clinical feature information had the highest accuracy (area under curve = 0.879; 95% confidence interval, 0.787-0.979). The combined model outperformed the clinical model, whereas the combined model showed no significant difference from the radiomics model.The random forest model constructed with both radiomics and clinical information can accurately predict and improve discriminative power of computed tomography angiography in identifying ischemic symptoms in patients with carotid atherosclerosis. This model can aid in guiding the follow-up treatment of patients at high risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知123完成签到,获得积分10
刚刚
执着易绿完成签到,获得积分10
刚刚
李朝富发布了新的文献求助10
1秒前
张凡完成签到 ,获得积分10
2秒前
Sarah完成签到 ,获得积分10
3秒前
水静嫡完成签到 ,获得积分10
3秒前
David完成签到,获得积分10
4秒前
liuhang完成签到,获得积分10
4秒前
6秒前
Tawziyar完成签到,获得积分10
6秒前
7秒前
香蕉觅云应助李朝富采纳,获得10
7秒前
8秒前
David发布了新的文献求助10
8秒前
bkagyin应助shenerqing采纳,获得30
9秒前
为科研奋斗完成签到,获得积分20
9秒前
Lucas应助飞跃采纳,获得10
10秒前
10秒前
10秒前
zhaozhao完成签到 ,获得积分10
10秒前
谦让寄容发布了新的文献求助10
11秒前
天玄一刀完成签到,获得积分10
11秒前
科研通AI5应助YJ采纳,获得20
11秒前
GLv发布了新的文献求助10
11秒前
13秒前
Blanca发布了新的文献求助30
13秒前
Zehn发布了新的文献求助10
13秒前
13秒前
wkr完成签到,获得积分10
14秒前
上官若男应助壮观的菠萝采纳,获得30
16秒前
晨晨CC完成签到,获得积分20
16秒前
Lucky完成签到,获得积分10
17秒前
DEATH发布了新的文献求助30
18秒前
积极从蕾应助Blanca采纳,获得10
18秒前
cwy完成签到,获得积分10
19秒前
Serendipity应助蘑菇腿采纳,获得10
19秒前
迅速冰岚发布了新的文献求助10
19秒前
20秒前
yang完成签到,获得积分10
21秒前
23秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
Grammar in Action:Building comprehensive grammars of talk-in-interaction 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4163834
求助须知:如何正确求助?哪些是违规求助? 3699415
关于积分的说明 11680303
捐赠科研通 3389122
什么是DOI,文献DOI怎么找? 1858529
邀请新用户注册赠送积分活动 919157
科研通“疑难数据库(出版商)”最低求助积分说明 831917