已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting transient ischemic attack risk in patients with mild carotid stenosis using machine learning and CT radiomics

医学 颈动脉内膜切除术 狭窄 随机森林 计算机断层血管造影 放射科 逻辑回归 颈内动脉 人工智能 血管造影 内科学 计算机科学
作者
Hai Xia,Lei Yuan,Wei Zhao,Chenglei Zhang,Lingfeng Zhao,Jialin Hou,Yancheng Luan,Yuxin Bi,Yaoyu Feng
出处
期刊:Frontiers in Neurology [Frontiers Media SA]
卷期号:14 被引量:12
标识
DOI:10.3389/fneur.2023.1105616
摘要

This study aims to establish a radiomics-based machine learning model that predicts the risk of transient ischemic attack in patients with mild carotid stenosis (30-50% North American Symptomatic Carotid Endarterectomy Trial) using extracted computed tomography radiomics features and clinical information.A total of 179 patients underwent carotid computed tomography angiography (CTA), and 219 carotid arteries with a plaque at the carotid bifurcation or proximal to the internal carotid artery were selected. The patients were divided into two groups; patients with symptoms of transient ischemic attack after CTA and patients without symptoms of transient ischemic attack after CTA. Then we performed random sampling methods stratified by the predictive outcome to obtain the training set (N = 165) and testing set (N = 66). 3D Slicer was employed to select the site of plaque on the computed tomography image as the volume of interest. An open-source package PyRadiomics in Python was used to extract radiomics features from the volume of interests. The random forest and logistic regression models were used to screen feature variables, and five classification algorithms were used, including random forest, eXtreme Gradient Boosting, logistic regression, support vector machine, and k-nearest neighbors. Data on radiomic feature information, clinical information, and the combination of these pieces of information were used to generate the model that predicts the risk of transient ischemic attack in patients with mild carotid artery stenosis (30-50% North American Symptomatic Carotid Endarterectomy Trial).The random forest model that was built based on the radiomics and clinical feature information had the highest accuracy (area under curve = 0.879; 95% confidence interval, 0.787-0.979). The combined model outperformed the clinical model, whereas the combined model showed no significant difference from the radiomics model.The random forest model constructed with both radiomics and clinical information can accurately predict and improve discriminative power of computed tomography angiography in identifying ischemic symptoms in patients with carotid atherosclerosis. This model can aid in guiding the follow-up treatment of patients at high risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
无糖可乐完成签到,获得积分10
2秒前
3秒前
马里奥好难完成签到 ,获得积分10
3秒前
科研通AI6.1应助机灵若灵采纳,获得10
5秒前
5秒前
6秒前
shinn发布了新的文献求助10
8秒前
8秒前
9秒前
电王发布了新的文献求助10
9秒前
10秒前
迷路以筠发布了新的文献求助10
10秒前
12秒前
keyanxinshou完成签到 ,获得积分10
13秒前
无糖可乐发布了新的文献求助10
14秒前
飞龙在天发布了新的文献求助10
15秒前
潇湘发布了新的文献求助10
15秒前
迷路以筠完成签到,获得积分10
18秒前
王炸炸完成签到,获得积分10
19秒前
20秒前
pass完成签到 ,获得积分10
20秒前
有趣的银完成签到,获得积分10
23秒前
SciGPT应助shinn采纳,获得10
25秒前
科研通AI2S应助wrb采纳,获得10
26秒前
曾诗婷完成签到 ,获得积分10
29秒前
隐形的大有完成签到,获得积分10
33秒前
khh完成签到 ,获得积分10
34秒前
34秒前
LUYAO1完成签到 ,获得积分10
35秒前
英俊的铭应助小高采纳,获得10
36秒前
打打应助隐形的大有采纳,获得10
36秒前
Gabriel发布了新的文献求助10
40秒前
961完成签到,获得积分10
41秒前
天天快乐应助hu采纳,获得10
41秒前
46秒前
CodeCraft应助老实乌冬面采纳,获得10
46秒前
47秒前
8888发布了新的文献求助10
50秒前
小歘歘完成签到 ,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5821953
求助须知:如何正确求助?哪些是违规求助? 5978396
关于积分的说明 15558205
捐赠科研通 4943354
什么是DOI,文献DOI怎么找? 2662577
邀请新用户注册赠送积分活动 1608767
关于科研通互助平台的介绍 1563681