Revealing EXPH5 as a potential diagnostic gene biomarker of the late stage of COPD based on machine learning analysis

慢性阻塞性肺病 生物标志物 阶段(地层学) 免疫系统 转录组 基因 疾病 肿瘤科 基因表达 医学 免疫学 内科学 生物 遗传学 古生物学
作者
Yuwei Yang,Yan Cao,Xiaobo Han,Xihui Ma,Rui Li,Rentao Wang,Li Xiao,Lixin Xie
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:154: 106621-106621 被引量:24
标识
DOI:10.1016/j.compbiomed.2023.106621
摘要

Chronic obstructive pulmonary disease is a kind of chronic lung disease characterized by persistent air flow obstruction, which was the third leading cause of death in China. The incidence of COPD is steadily and increasing and has been a globally sever disease. Accordingly, it is urgently needed to explore how to diagnose and treat COPD timely. This study aims to find key genes to diagnose COPD as soon as possible to avoid COPD processing and analyze immune cell infiltration between COPD early stage and late stage. Two GEO datasets were merged as the merge data for analyses. 157 DEGs were used for GSEA analysis to find the pathway between COPD early stage and late stage. Above all, gene EXPH5 stood out from the screen as the most likely candidate diagnosis biomarker of COPD indicating the late-stage by least LASSO and SVM-RFE. ROC curves of EXPH5 were applied to represent the discriminatory ability through the area under the curve which is the gold standard to evaluate the accuracy of diagnosis and survival rate. The CIBERSORT algorithm was used to assess the distribution of tissue-infiltrating immune cells between two COPD stages. The diagnosis biomarker, gene EXPH5 had a positive correlation with NK cells resting; mast cell resting, eosinophils, and negative correlation with T cell gamma delta, macrophages M1, which underscore the role of gene and immune cell infiltration. To make results more reliable, we further analyzed the gene EXPH5 expression in single-cell transcriptome data and showed again that EXPH5 genes significantly downregulated in the late stage of COPD especially in the main lung cell types AT1 and AT2. In a word, our study identified genes EXPH5 as a marker gene, which adds to the knowledge for clinical diagnosis and pharmaceutical design of COPD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lsd发布了新的文献求助10
4秒前
4秒前
xcchh发布了新的文献求助10
5秒前
祝祝侠完成签到 ,获得积分10
6秒前
aurora发布了新的文献求助10
6秒前
7秒前
FKHY应助弹剑作歌采纳,获得10
7秒前
9秒前
olderna发布了新的文献求助10
10秒前
自然傀斗完成签到,获得积分10
11秒前
潇洒夏天发布了新的文献求助10
12秒前
坚定岂愈发布了新的文献求助10
13秒前
16秒前
汉堡包应助leezz采纳,获得30
16秒前
无花果应助面向阳光采纳,获得10
18秒前
小鹿发布了新的文献求助10
19秒前
19秒前
zkyyinf_zero完成签到,获得积分10
19秒前
20秒前
啥也不会发布了新的文献求助10
22秒前
23秒前
一一完成签到,获得积分10
24秒前
24秒前
25秒前
咘咘发布了新的文献求助10
27秒前
muxinzx完成签到,获得积分10
27秒前
英姑应助难过手链采纳,获得10
28秒前
29秒前
30秒前
面向阳光完成签到,获得积分10
31秒前
一一发布了新的文献求助10
31秒前
欣忆完成签到 ,获得积分10
32秒前
飞快的蛋应助吞金采纳,获得10
32秒前
33秒前
orixero应助lsd采纳,获得10
33秒前
37秒前
平淡的雨关注了科研通微信公众号
37秒前
37秒前
39秒前
闪闪映易完成签到,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Competency Based Human Resource Management 500
How to Develop Robust Scale-up Strategies for Complex Injectable Dosage Forms 450
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5863210
求助须知:如何正确求助?哪些是违规求助? 6390106
关于积分的说明 15648233
捐赠科研通 4977196
什么是DOI,文献DOI怎么找? 2684865
邀请新用户注册赠送积分活动 1628042
关于科研通互助平台的介绍 1585738