OWL: an optimized and independently validated machine learning prediction model for lung cancer screening based on the UK Biobank, PLCO, and NLST populations

医学 接收机工作特性 生命银行 全国肺筛查试验 肺癌 肺癌筛查 人口 判别式 风险评估 癌症 机器学习 内科学 人工智能 肿瘤科 计算机科学 生物信息学 环境卫生 生物 计算机安全
作者
Zoucheng Pan,Ruyang Zhang,Sipeng Shen,Yunzhi Lin,Longyao Zhang,Xiang Wang,Qian Ye,Xuan Wang,Jiajin Chen,Yang Zhao,David C. Christiani,Yi Li,Feng Chen,Yongyue Wei
出处
期刊:EBioMedicine [Elsevier]
卷期号:88: 104443-104443
标识
DOI:10.1016/j.ebiom.2023.104443
摘要

A reliable risk prediction model is critically important for identifying individuals with high risk of developing lung cancer as candidates for low-dose chest computed tomography (LDCT) screening. Leveraging a cutting-edge machine learning technique that accommodates a wide list of questionnaire-based predictors, we sought to optimize and validate a lung cancer prediction model.We developed an Optimized early Warning model for Lung cancer risk (OWL) using the XGBoost algorithm with 323,344 participants from the England area in UK Biobank (training set), and independently validated it with 93,227 participants from UKB Scotland and Wales area (validation set 1), as well as 70,605 and 66,231 participants in the Prostate, Lung, Colorectal, and Ovarian cancer screening trial (PLCO) control and intervention subpopulations, respectively (validation sets 2 & 3) and 23,138 and 18,669 participants in the United States National Lung Screening Trial (NLST) control and intervention subpopulations, respectively (validation sets 4 & 5). By comparing with three competitive prediction models, i.e., PLCO modified 2012 (PLCOm2012), PLCO modified 2014 (PLCOall2014), and the Liverpool Lung cancer Project risk model version 3 (LLPv3), we assessed the discrimination of OWL by the area under receiver operating characteristic curve (AUC) at the designed time point. We further evaluated the calibration using relative improvement in the ratio of expected to observed lung cancer cases (RIEO), and illustrated the clinical utility by the decision curve analysis.For general population, with validation set 1, OWL (AUC = 0.855, 95% CI: 0.829-0.880) presented a better discriminative capability than PLCOall2014 (AUC = 0.821, 95% CI: 0.794-0.848) (p < 0.001); with validation sets 2 & 3, AUC of OWL was comparable to PLCOall2014 (AUCPLCOall2014-AUCOWL < 1%). For ever-smokers, OWL outperformed PLCOm2012 and PLCOall2014 among ever-smokers in validation set 1 (AUCOWL = 0.842, 95% CI: 0.814-0.871; AUCPLCOm2012 = 0.792, 95% CI: 0.760-0.823; AUCPLCOall2014 = 0.791, 95% CI: 0.760-0.822, all p < 0.001). OWL remained comparable to PLCOm2012 and PLCOall2014 in discrimination (AUC difference from -0.014 to 0.008) among the ever-smokers in validation sets 2 to 5. In all the validation sets, OWL outperformed LLPv3 among the general population and the ever-smokers. Of note, OWL showed significantly better calibration than PLCOm2012, PLCOall2014 (RIEO from 43.1% to 92.3%, all p < 0.001), and LLPv3 (RIEO from 41.4% to 98.7%, all p < 0.001) in most cases. For clinical utility, OWL exhibited significant improvement in average net benefits (NB) over PLCOall2014 in validation set 1 (NB improvement: 32, p < 0.001); among ever smokers of validation set 1, OWL (average NB = 289) retained significant improvement over PLCOm2012 (average NB = 213) (p < 0.001). OWL had equivalent NBs with PLCOm2012 and PLCOall2014 in PLCO and NLST populations, while outperforming LLPv3 in the three populations.OWL, with a high degree of predictive accuracy and robustness, is a general framework with scientific justifications and clinical utility that can aid in screening individuals with high risks of lung cancer.National Natural Science Foundation of China, the US NIH.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
sakura发布了新的文献求助10
2秒前
2秒前
Jennie369完成签到,获得积分10
3秒前
雷霆康康完成签到,获得积分10
4秒前
科研通AI2S应助yuqinghui98采纳,获得10
4秒前
bread完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
wangwang发布了新的文献求助10
6秒前
7秒前
充电宝应助沉默的薯饼采纳,获得10
7秒前
linhuafeng完成签到,获得积分10
7秒前
yeyinrong完成签到,获得积分20
7秒前
Le完成签到,获得积分10
8秒前
晨晞完成签到 ,获得积分10
8秒前
烟花应助火星人采纳,获得10
9秒前
9秒前
9秒前
13秒前
snowy_owl发布了新的文献求助10
13秒前
高山完成签到 ,获得积分10
13秒前
落后访风99完成签到,获得积分10
13秒前
14秒前
解惑大师发布了新的文献求助10
14秒前
小蘑菇应助毛子涵采纳,获得10
16秒前
sakura完成签到,获得积分20
16秒前
17秒前
18秒前
喵星人发布了新的文献求助10
18秒前
xiao123发布了新的文献求助10
19秒前
执名之念完成签到,获得积分10
20秒前
20秒前
火星人发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
22秒前
依古比古完成签到 ,获得积分10
22秒前
Gloria完成签到,获得积分10
23秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5810972
求助须知:如何正确求助?哪些是违规求助? 5895203
关于积分的说明 15530718
捐赠科研通 4935314
什么是DOI,文献DOI怎么找? 2657627
邀请新用户注册赠送积分活动 1603947
关于科研通互助平台的介绍 1559169