An investigation on energy spectral information of computed tomography for machine learning in lesion classification

计算机科学 人工智能 计算机断层摄影术 能量(信号处理) 病变 断层摄影术 模式识别(心理学) 计算机视觉 机器学习 放射科 物理 光学 医学 量子力学 精神科
作者
Daniel Liang,David Liang,Alice C. Wei,Ryan Kuo,Shaojie Chang,Marc J. Pomeroy,Yongfeng Gao
出处
期刊:Medical Imaging 2018: Computer-Aided Diagnosis 卷期号:: 101-101
标识
DOI:10.1117/12.2654401
摘要

Recent advancement of spectral computed tomography (SpCT) technologies by either multi-energy spectral data acquisition with energy-integration detector or single-energy spectral data acquisition with photon counting detector has enabled the reconstruction of virtual monochromatic images (VMIs) at any energy values within and outside the energy spectral ranges of current CTs’ X-ray tubes, resulting in the possibility of not only visualizing the tissue contrast variation characteristics along the X-ray energy dimension, but also quantifying the variation characteristics by machine learning (ML) for prediction of lesion malignancy or computer-aided diagnosis (CADx). This study explored the energy spectral information of SpCT, i.e., the contrast variation characteristics along the X-ray energy dimension, for ML-CADx of lesion type of colorectal polyps. Particularly, the tissue contrast variation patterns, called energy spectral features, along the Xray energy dimension in the VMIs is investigated. A figure of merit (FOM) for the task of ML-CADx is proposed, which ranks the series of VMIs along the X-ray energy dimension by inputting each VMI into a single channel deep learning (DL) pipeline and generating a corresponding a score of AUC (area under the curve of receiver operating characteristics). Then the FOM selects different numbers of the most highly ranked VMIs as the inputs to a multi-channel DL pipeline to generate the corresponding of AUC scores until all VMIs are selected. It is hypothesized that the AUC scores from the multi-channel DL pipeline will increase to reach the highest score and then drop along the ranking order, because all VMIs have the same anatomic structure and, therefore, the strong data redundancy. The FOM reaches the highest AUC score by minimizing the redundancy. We tested the hypothesis by comparing the proposed FOM-rank ML-CADx with the widely used Karhunen-Loève (KL) transform-based ranking method where the principal components are ordered automatically by the KL transform. The lesion data include the CT images of colorectal polyps and the pathological reports after they were resected. The proposed FOM-rank method outperformed the KL-based ranking method with an optimal gain of 4.7%, showing its effectiveness in prediction of lesion malignancy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
充电宝应助正义必胜采纳,获得10
2秒前
gyl完成签到 ,获得积分10
3秒前
爆米花应助清秀豪英采纳,获得10
3秒前
orchid发布了新的文献求助10
4秒前
4秒前
hwl12138完成签到,获得积分20
5秒前
6秒前
6秒前
程勋航发布了新的文献求助10
8秒前
研友_Y59785应助科研通管家采纳,获得10
10秒前
慕青应助iuim采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
研友_Y59785应助科研通管家采纳,获得10
10秒前
10秒前
研友_Y59785应助科研通管家采纳,获得10
10秒前
10秒前
卓卓完成签到,获得积分10
10秒前
11秒前
13秒前
13秒前
13秒前
学学术术小小白白完成签到,获得积分10
14秒前
14秒前
14秒前
mz完成签到 ,获得积分10
15秒前
16秒前
来一客温暖完成签到,获得积分20
16秒前
乌龙茶干完成签到,获得积分10
17秒前
17秒前
17秒前
研友_ZAyqJZ完成签到,获得积分10
17秒前
18秒前
丹dan完成签到,获得积分10
18秒前
传奇3应助H28G采纳,获得10
19秒前
19秒前
啦啦啦完成签到 ,获得积分10
20秒前
21秒前
机灵的幻灵完成签到 ,获得积分10
22秒前
iuim发布了新的文献求助10
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783306
求助须知:如何正确求助?哪些是违规求助? 3328584
关于积分的说明 10237387
捐赠科研通 3043770
什么是DOI,文献DOI怎么找? 1670643
邀请新用户注册赠送积分活动 799811
科研通“疑难数据库(出版商)”最低求助积分说明 759130