Acceptor-based qubit in silicon with tunable strain

量子位元 物理 量子计算机 量子门 凝聚态物理 量子力学 量子
作者
Shihang Zhang,Yu He,Peihao Huang
出处
期刊:Physical review [American Physical Society]
卷期号:107 (15) 被引量:5
标识
DOI:10.1103/physrevb.107.155301
摘要

Long coherence time and compatibility with semiconductor fabrication make spin qubits in silicon an attractive platform for quantum computing. In recent years, hole spin qubits are being developed as they have the advantages of weak coupling to nuclear spin noise and strong spin-orbit coupling (SOC), in constructing high-fidelity quantum gates. However, there are relatively few studies on the hole spin qubits in a single acceptor, which requires only low density of the metallic gates. In particular, the investigation of flexible tunability using controllable strain for fault-tolerant quantum gates of acceptor-based qubits is still lacking. Here, we study the tunability of electric dipole spin resonance (EDSR) of acceptor-based hole spin qubits with controllable strain. The flexible tunability of heavy hole-light hole splitting and spin-hole coupling (SHC) with the two kinds of strain can avoid a high electric field at the ``sweet spot'', and the operation performance of the acceptor qubits could be optimized. Longer relaxation time or stronger EDSR coupling at a low electric field can be obtained. Moreover, with asymmetric strain, two sweet spots are induced and may merge together, and form a second-order sweet spot. As a result, the quality factor $Q$ can reach ${10}^{4}$ for a single-qubit operation, with a high tolerance for the electric field variation. Furthermore, the two-qubit operation of acceptor qubits based on dipole-dipole interaction is discussed for high-fidelity two-qubit gates. The quality factors of single-qubit gates and two-qubit gates can be enhanced by 100 and 7 times respectively with tunable strain. The tunability of spin qubit properties in an acceptor via strain could provide promising routes for spin-based quantum computing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
烟花应助宝儿柯察金采纳,获得10
1秒前
cc发布了新的文献求助10
6秒前
我是老大应助JFP采纳,获得10
8秒前
123完成签到,获得积分20
10秒前
干净的媚颜完成签到 ,获得积分10
10秒前
上官若男应助理li采纳,获得10
10秒前
陆小果完成签到,获得积分10
11秒前
在水一方应助Zhong采纳,获得10
12秒前
鼠鼠完成签到 ,获得积分10
13秒前
13秒前
15秒前
喜悦柠檬完成签到,获得积分10
16秒前
18秒前
18秒前
没时间解释了完成签到,获得积分10
20秒前
21秒前
22秒前
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
TCM_XZ完成签到 ,获得积分10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
cc完成签到,获得积分10
23秒前
23秒前
SciGPT应助科研通管家采纳,获得30
23秒前
linkman完成签到,获得积分0
24秒前
24秒前
田様应助overlood采纳,获得10
25秒前
Cherie77发布了新的文献求助10
27秒前
ssy发布了新的文献求助10
27秒前
传奇3应助axin采纳,获得10
27秒前
wz完成签到,获得积分10
28秒前
子车茗应助Forward采纳,获得30
30秒前
31秒前
努力向上的小刘完成签到,获得积分10
34秒前
李颖完成签到,获得积分10
35秒前
cooper完成签到 ,获得积分10
37秒前
Kate完成签到,获得积分10
37秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Rise & Fall of Classical Legal Thought 260
Tonal intuitions in "Tristan und Isolde" / by Brian Hyer 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4333680
求助须知:如何正确求助?哪些是违规求助? 3845252
关于积分的说明 12011128
捐赠科研通 3485826
什么是DOI,文献DOI怎么找? 1913423
邀请新用户注册赠送积分活动 956610
科研通“疑难数据库(出版商)”最低求助积分说明 857302