Correlation-Filter-Based Channel and Feature Selection Framework for Hybrid EEG-fNIRS BCI Applications

计算机科学 模式识别(心理学) 人工智能 脑-机接口 特征选择 脑电图 特征(语言学) 相关性 频道(广播) 滤波器(信号处理) 语音识别 计算机视觉 数学 神经科学 电信 几何学 哲学 语言学 心理学
作者
Muhammad Umair Ali,Amad Zafar,Karam Dad Kallu,Haris Masood,Malik Muhammad Naeem Mannan,Malik Muhammad Ibrahim,Sangil Kim,Muhammad Attique Khan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (6): 3361-3370 被引量:15
标识
DOI:10.1109/jbhi.2023.3294586
摘要

The proposed study is based on a feature and channel selection strategy that uses correlation filters for brain–computer interface (BCI) applications using electroencephalography (EEG)-functional near-infrared spectroscopy (fNIRS) brain imaging modalities. The proposed approach fuses the complementary information of the two modalities to train the classifier. The channels most closely correlated with brain activity are extracted using a correlation-based connectivity matrix for fNIRS and EEG separately. Furthermore, the training vector is formed through the identification and fusion of the statistical features of both modalities (i.e., slope, skewness, maximum, skewness, mean, and kurtosis) The constructed fused feature vector is passed through various filters (including ReliefF, minimum redundancy maximum relevance, chi-square test, analysis of variance, and Kruskal-Wallis filters) to remove redundant information before training. Traditional classifiers such as neural networks, support-vector machines, linear discriminant analysis, and ensembles were used for the purpose of training and testing. A publicly available dataset with motor imagery information was used for validation of the proposed approach. Our findings indicate that the proposed correlation-filter-based channel and feature selection framework significantly enhances the classification accuracy of hybrid EEG-fNIRS. The ReliefF-based filter outperformed other filters with the ensemble classifier with a high accuracy of 94.77 ± 4.26%. The statistical analysis also validated the significance (p < 0.01) of the results. A comparison of the proposed framework with the prior findings was also presented. Our results show that the proposed approach can be used in future EEG-fNIRS-based hybrid BCI applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Joyboy完成签到,获得积分10
刚刚
ooo娜发布了新的文献求助10
2秒前
3秒前
nnn25完成签到,获得积分10
3秒前
领导范儿应助奇点采纳,获得10
4秒前
哒哒完成签到,获得积分10
6秒前
7秒前
嘻嘻嘻发布了新的文献求助10
7秒前
xt发布了新的文献求助30
11秒前
tao完成签到,获得积分10
11秒前
11秒前
ucjudgo完成签到,获得积分10
13秒前
Hello应助00小费0采纳,获得10
13秒前
卡尔拉完成签到,获得积分10
13秒前
14秒前
15秒前
半糖乌龙茶完成签到,获得积分20
15秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
思源应助王祖云采纳,获得10
15秒前
科目三应助那一片海采纳,获得10
15秒前
顺利的尔芙完成签到,获得积分10
16秒前
17秒前
斯文败类应助会会会采纳,获得10
17秒前
科研通AI6应助嘻嘻嘻采纳,获得10
18秒前
18秒前
奇点发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
ljx123完成签到,获得积分10
20秒前
mtf完成签到,获得积分20
20秒前
脑洞疼应助心想柿橙采纳,获得10
20秒前
脚丫当当发布了新的文献求助10
20秒前
cxy发布了新的文献求助10
21秒前
温暖水蓝发布了新的文献求助10
22秒前
22秒前
cultromics发布了新的文献求助10
22秒前
科研通AI5应助沛宝无敌采纳,获得10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4666247
求助须知:如何正确求助?哪些是违规求助? 4046947
关于积分的说明 12517364
捐赠科研通 3739565
什么是DOI,文献DOI怎么找? 2065248
邀请新用户注册赠送积分活动 1094813
科研通“疑难数据库(出版商)”最低求助积分说明 975124