CL-Impute: A contrastive learning-based imputation for dropout single-cell RNA-seq data

插补(统计学) 辍学(神经网络) 计算机科学 缺少数据 人工智能 推论 机器学习 数据挖掘
作者
Yuchen Shi,Jian Wan,Xin Zhang,Yuyu Yin
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107263-107263 被引量:13
标识
DOI:10.1016/j.compbiomed.2023.107263
摘要

Single-cell RNA-sequencing (scRNA-seq) technology has revolutionized the study of cell heterogeneity and biological interpretation at the single-cell level. However, the dropout events commonly present in scRNA-seq data can markedly reduce the reliability of downstream analysis. Existing imputation methods often overlook the discrepancy between the established cell relationship from dropout noisy data and reality, which limits their performances due to the learned untrustworthy cell representations. Here, we propose a novel approach called the CL-Impute (Contrastive Learning-based Impute) model for estimating missing genes without relying on preconstructed cell relationships. CL-Impute utilizes contrastive learning and a self-attention network to address this challenge. Specifically, the proposed CL-Impute model leverages contrastive learning to learn cell representations from the self-perspective of dropout events, whereas the self-attention network captures cell relationships from the global-perspective. Experimental results on four benchmark datasets, including quantitative assessment, cell clustering, gene identification, and trajectory inference, demonstrate the superior performance of CL-Impute compared with that of existing state-of-the-art imputation methods. Furthermore, our experiment reveals that combining contrastive learning and masking cell augmentation enables the model to learn actual latent features from noisy data with a high rate of dropout events, enhancing the reliability of imputed values. CL-Impute is a novel contrastive learning-based method to impute scRNA-seq data in the context of high dropout rate. The source code of CL-Impute is available at https://github.com/yuchen21-web/Imputation-for-scRNA-seq.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mk完成签到 ,获得积分10
刚刚
dhhdnd完成签到,获得积分10
1秒前
2秒前
九天完成签到 ,获得积分0
4秒前
含糊的芷巧完成签到,获得积分20
6秒前
Ivy完成签到 ,获得积分10
8秒前
8秒前
凡凡发布了新的文献求助10
8秒前
11秒前
JerryJi发布了新的文献求助10
14秒前
Spoiled完成签到 ,获得积分10
14秒前
jjy完成签到 ,获得积分10
14秒前
寻道图强应助宇麦达采纳,获得50
15秒前
丰富青文完成签到,获得积分10
16秒前
16秒前
18秒前
凡凡发布了新的文献求助10
21秒前
23秒前
小猪找库里完成签到,获得积分10
24秒前
核桃发布了新的文献求助10
24秒前
lizishu应助yyx采纳,获得150
26秒前
慕无忌发布了新的文献求助10
28秒前
28秒前
32秒前
32秒前
32秒前
32秒前
32秒前
32秒前
32秒前
32秒前
32秒前
32秒前
小蘑菇应助科研通管家采纳,获得10
33秒前
共享精神应助科研通管家采纳,获得10
33秒前
Akim应助科研通管家采纳,获得10
33秒前
33秒前
33秒前
英俊的铭应助科研通管家采纳,获得10
33秒前
乐空思应助花生YZ采纳,获得10
34秒前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847785
求助须知:如何正确求助?哪些是违规求助? 6230322
关于积分的说明 15621233
捐赠科研通 4964482
什么是DOI,文献DOI怎么找? 2676652
邀请新用户注册赠送积分活动 1621140
关于科研通互助平台的介绍 1577165