已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CL-Impute: A contrastive learning-based imputation for dropout single-cell RNA-seq data

插补(统计学) 辍学(神经网络) 计算机科学 缺少数据 人工智能 推论 机器学习 数据挖掘
作者
Yuchen Shi,Jian Wan,Xin Zhang,Yuyu Yin
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107263-107263 被引量:13
标识
DOI:10.1016/j.compbiomed.2023.107263
摘要

Single-cell RNA-sequencing (scRNA-seq) technology has revolutionized the study of cell heterogeneity and biological interpretation at the single-cell level. However, the dropout events commonly present in scRNA-seq data can markedly reduce the reliability of downstream analysis. Existing imputation methods often overlook the discrepancy between the established cell relationship from dropout noisy data and reality, which limits their performances due to the learned untrustworthy cell representations. Here, we propose a novel approach called the CL-Impute (Contrastive Learning-based Impute) model for estimating missing genes without relying on preconstructed cell relationships. CL-Impute utilizes contrastive learning and a self-attention network to address this challenge. Specifically, the proposed CL-Impute model leverages contrastive learning to learn cell representations from the self-perspective of dropout events, whereas the self-attention network captures cell relationships from the global-perspective. Experimental results on four benchmark datasets, including quantitative assessment, cell clustering, gene identification, and trajectory inference, demonstrate the superior performance of CL-Impute compared with that of existing state-of-the-art imputation methods. Furthermore, our experiment reveals that combining contrastive learning and masking cell augmentation enables the model to learn actual latent features from noisy data with a high rate of dropout events, enhancing the reliability of imputed values. CL-Impute is a novel contrastive learning-based method to impute scRNA-seq data in the context of high dropout rate. The source code of CL-Impute is available at https://github.com/yuchen21-web/Imputation-for-scRNA-seq.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天棱完成签到,获得积分10
1秒前
2秒前
neao完成签到 ,获得积分10
3秒前
烂漫香水完成签到 ,获得积分10
4秒前
夏天无完成签到 ,获得积分10
4秒前
6秒前
7秒前
wangfaqing942完成签到 ,获得积分10
7秒前
理想三寻完成签到,获得积分10
7秒前
超级的千青完成签到 ,获得积分10
8秒前
小李完成签到 ,获得积分10
9秒前
静水流深发布了新的文献求助10
11秒前
sdd完成签到,获得积分10
11秒前
11秒前
Suzi完成签到 ,获得积分10
12秒前
小陈完成签到 ,获得积分10
14秒前
卡卡东完成签到 ,获得积分10
14秒前
14秒前
koui完成签到 ,获得积分10
14秒前
Eric完成签到,获得积分10
15秒前
颜林林完成签到,获得积分10
15秒前
sl完成签到 ,获得积分10
17秒前
上官未良完成签到,获得积分20
18秒前
静水流深完成签到,获得积分10
18秒前
ding应助利子采纳,获得10
19秒前
Murphy完成签到 ,获得积分10
20秒前
如意竺完成签到,获得积分0
20秒前
LELE完成签到 ,获得积分10
21秒前
云峤完成签到 ,获得积分10
21秒前
23秒前
lululu完成签到 ,获得积分10
24秒前
8R完成签到 ,获得积分10
24秒前
ding应助上官未良采纳,获得50
25秒前
lpp完成签到 ,获得积分10
26秒前
26秒前
CipherSage应助科研通管家采纳,获得10
26秒前
Akim应助科研通管家采纳,获得10
27秒前
kaka完成签到,获得积分0
27秒前
尔白完成签到 ,获得积分10
28秒前
string发布了新的文献求助30
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Clinical Efficacy of the Hydrogel Patch Containing Loxoprofen Sodium (LX-A) on Osteoarthritis of the Knee-A Randomized, Open Label Clinical Study with Ketoprofen Patch-(Phase III Therapeutic Confirmatory Study) 410
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5844764
求助须知:如何正确求助?哪些是违规求助? 6193960
关于积分的说明 15615264
捐赠科研通 4961400
什么是DOI,文献DOI怎么找? 2674918
邀请新用户注册赠送积分活动 1619741
关于科研通互助平台的介绍 1574992

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10