Hyperspectral Image Super-Resolution Meets Deep Learning: A Survey and Perspective

高光谱成像 全色胶片 人工智能 计算机科学 多光谱图像 图像分辨率 透视图(图形) 遥感 分辨率(逻辑) 图像(数学) 模式识别(心理学) 深度学习 计算机视觉 地理
作者
Xinya Wang,Qian Hu,Yingsong Cheng,Jiayi Ma
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:10 (8): 1668-1691 被引量:17
标识
DOI:10.1109/jas.2023.123681
摘要

Hyperspectral image super-resolution, which refers to reconstructing the high-resolution hyperspectral image from the input low-resolution observation, aims to improve the spatial resolution of the hyperspectral image, which is beneficial for subsequent applications. The development of deep learning has promoted significant progress in hyperspectral image super-resolution, and the powerful expression capabilities of deep neural networks make the predicted results more reliable. Recently, several latest deep learning technologies have made the hyperspectral image super-resolution method explode. However, a comprehensive review and analysis of the latest deep learning methods from the hyperspectral image super-resolution perspective is absent. To this end, in this survey, we first introduce the concept of hyper-spectral image super-resolution and classify the methods from the perspectives with or without auxiliary information. Then, we review the learning-based methods in three categories, including single hyperspectral image super-resolution, panchromatic-based hyperspectral image super-resolution, and multispectral-based hyperspectral image super-resolution. Subsequently, we summarize the commonly used hyperspectral dataset, and the evaluations for some representative methods in three categories are performed qualitatively and quantitatively. Moreover, we briefly introduce several typical applications of hyperspectral image super-resolution, including ground object classification, urban change detection, and ecosystem monitoring. Finally, we provide the conclusion and challenges in existing learning-based methods, looking forward to potential future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助二十五采纳,获得10
刚刚
Tico完成签到,获得积分10
刚刚
Hello应助科研快乐采纳,获得10
刚刚
熙悦发布了新的文献求助10
刚刚
刚刚
斯文败类应助22采纳,获得10
1秒前
汉堡包应助栗子采纳,获得20
1秒前
1秒前
1秒前
1秒前
1秒前
Yun yun发布了新的文献求助10
2秒前
2秒前
sycrax完成签到,获得积分10
3秒前
3秒前
Ava应助xyoua采纳,获得10
3秒前
4秒前
酷波er应助清新的苑博采纳,获得10
4秒前
4秒前
转身风飘去完成签到,获得积分10
5秒前
不过尔尔完成签到,获得积分10
5秒前
5秒前
5秒前
复杂的凝冬完成签到,获得积分10
5秒前
阿阿阿阿冀完成签到,获得积分10
6秒前
今后应助Wiesen采纳,获得10
6秒前
zz发布了新的文献求助10
6秒前
晚风完成签到,获得积分20
7秒前
Marita发布了新的文献求助10
7秒前
amwlsai发布了新的文献求助10
7秒前
Akim应助欢呼的以蓝采纳,获得10
8秒前
8秒前
酷波er应助从容的方盒采纳,获得10
8秒前
9秒前
Liou应助zhangnan采纳,获得10
9秒前
ygl0217发布了新的文献求助10
9秒前
薇子完成签到,获得积分10
9秒前
科研通AI5应助瀚森采纳,获得10
9秒前
rrr发布了新的文献求助10
9秒前
乐观荔枝完成签到,获得积分10
9秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804892
求助须知:如何正确求助?哪些是违规求助? 3349972
关于积分的说明 10346579
捐赠科研通 3065797
什么是DOI,文献DOI怎么找? 1683320
邀请新用户注册赠送积分活动 808810
科研通“疑难数据库(出版商)”最低求助积分说明 764978