Abstract 14985: Artificial Intelligence Based Heart Rate Variability Analysis for Sudden Cardiac Arrest Risk Prediction

医学 心源性猝死 内科学 心脏病学 心脏骤停 心率变异性 人口 植入式心律转复除颤器 心率 血压 环境卫生
作者
Noam Keidar,Yael Yaniv,Alex Bronstein,Gal Eidelsztein
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:146 (Suppl_1) 被引量:1
标识
DOI:10.1161/circ.146.suppl_1.14985
摘要

Introduction: Sudden Cardiac Arrest (SCA) is an unexpected life-threatening loss of cardiac function potentially leading to sudden cardiac death (SCD). It accounts for a half of cardiac mortality, posing a major public health problem. While SCA can be treated with implantable cardioverter defibrillators (ICD), most (80%) SCDs occur in relatively low risk patients, for whom risk benefit ratio of an ICD is unfavorable. Therefore, novel methods to identify high risk individuals and the time on which their risk is high may facilitate prevention of SCD. Methods : Long (~24h) ECG recordings from individuals who had an SCA on record (n=20), patients with other arrhythmias (n=84) and from healthy individuals (n=17) from PhysioNet databases were analyzed to extract inter beat intervals (IBI). For each step in the IBI series, 120 last IBIs were used to calculate 19 indices that quantify short term heart rate variability (HRV). An artificial intelligence model named temporal convolutional network (TCN) was used to continuously assess the risk of a future VF event based on the current HRV estimate combined with few hours of history of previous HRV estimates. Training and testing of the TCN was done using Leave One Out testing done twice. Patients being classified at any point in the record as high risk were considered high risk. Results : Only patients from the SCA population, and none from the other arrythmia and healthy patients, were classified as high risk (PPV=100%). On average, sensitivity and specificity were 62.5% and 100% respectively Conclusions : In this preliminary retrospective analysis, artificial intelligence based HRV analysis identified risk for a SCA event in the following 24 hours with high specificity. Larger cohort and prospective testing are needed to assess the clinical utility of such systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呀呼发布了新的文献求助10
2秒前
haoqingyun完成签到,获得积分20
3秒前
3秒前
悲伤的小卷毛完成签到,获得积分10
6秒前
9秒前
10秒前
13秒前
14秒前
17秒前
年轻傲松完成签到,获得积分20
19秒前
21秒前
乐乐应助燕尔蓝采纳,获得10
23秒前
an发布了新的文献求助10
23秒前
24秒前
林非鹿发布了新的文献求助10
27秒前
27秒前
28秒前
打打应助mmm采纳,获得10
30秒前
呀呼发布了新的文献求助10
32秒前
哈哈哈哈发布了新的文献求助10
33秒前
小橘子发布了新的文献求助10
33秒前
34秒前
科研通AI6.1应助an采纳,获得10
36秒前
刘大河完成签到,获得积分10
36秒前
38秒前
zcf发布了新的文献求助10
42秒前
情怀应助一一采纳,获得10
44秒前
Hello应助小橘子采纳,获得10
45秒前
47秒前
wanci应助zcf采纳,获得10
48秒前
52秒前
52秒前
cccyyy发布了新的文献求助10
53秒前
友好巧曼发布了新的文献求助10
56秒前
迷路问梅发布了新的文献求助10
57秒前
动听的向秋完成签到,获得积分10
58秒前
59秒前
59秒前
sf发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1400
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Signals, Systems, and Signal Processing 880
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5837963
求助须知:如何正确求助?哪些是违规求助? 6128085
关于积分的说明 15600075
捐赠科研通 4956196
什么是DOI,文献DOI怎么找? 2671456
邀请新用户注册赠送积分活动 1616661
关于科研通互助平台的介绍 1571733