Hybrid Modeling of Lithium-Ion Battery: Physics-Informed Neural Network for Battery State Estimation

电池(电) 杠杆(统计) 计算机科学 人工神经网络 荷电状态 人工智能 航程(航空) 过程(计算) 机器学习 深度学习 工程类 物理 功率(物理) 量子力学 航空航天工程 操作系统
作者
Soumya Singh,Yvonne Eboumbou Ebongue,Shahed Rezaei,Kai Peter Birke
出处
期刊:Batteries [MDPI AG]
卷期号:9 (6): 301-301 被引量:62
标识
DOI:10.3390/batteries9060301
摘要

Accurate forecasting of the lifetime and degradation mechanisms of lithium-ion batteries is crucial for their optimization, management, and safety while preventing latent failures. However, the typical state estimations are challenging due to complex and dynamic cell parameters and wide variations in usage conditions. Physics-based models need a tradeoff between accuracy and complexity due to vast parameter requirements, while machine-learning models require large training datasets and may fail when generalized to unseen scenarios. To address this issue, this paper aims to integrate the physics-based battery model and the machine learning model to leverage their respective strengths. This is achieved by applying the deep learning framework called physics-informed neural networks (PINN) to electrochemical battery modeling. The state of charge and state of health of lithium-ion cells are predicted by integrating the partial differential equation of Fick’s law of diffusion from a single particle model into the neural network training process. The results indicate that PINN can estimate the state of charge with a root mean square error in the range of 0.014% to 0.2%, while the state of health has a range of 1.1% to 2.3%, even with limited training data. Compared to conventional approaches, PINN is less complex while still incorporating the laws of physics into the training process, resulting in adequate predictions, even for unseen situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
冬无青山完成签到,获得积分10
1秒前
埋头赶路完成签到,获得积分10
1秒前
科研通AI6.1应助菠萝包子采纳,获得10
2秒前
2秒前
灵巧书蝶发布了新的文献求助10
2秒前
3秒前
赘婿应助ss毒是采纳,获得10
3秒前
zhencheng完成签到,获得积分10
3秒前
英俊的铭应助曾经的音响采纳,获得10
3秒前
4秒前
4秒前
holen完成签到,获得积分10
4秒前
5秒前
随遇而安应助烂好人采纳,获得10
6秒前
lixin完成签到,获得积分10
6秒前
水泥酱发布了新的文献求助30
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
英姑应助无语的听筠采纳,获得10
9秒前
9秒前
华生发布了新的文献求助10
9秒前
隐形曼青应助木木酱采纳,获得10
10秒前
南方发布了新的文献求助10
11秒前
科目二三次郎完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
桐桐应助科研通管家采纳,获得10
13秒前
科研通AI6.1应助jhy采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
13秒前
852应助科研通管家采纳,获得30
13秒前
所所应助科研通管家采纳,获得30
13秒前
lily发布了新的文献求助10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5825172
求助须知:如何正确求助?哪些是违规求助? 6009321
关于积分的说明 15566266
捐赠科研通 4945826
什么是DOI,文献DOI怎么找? 2664476
邀请新用户注册赠送积分活动 1610324
关于科研通互助平台的介绍 1565270