Hybrid Modeling of Lithium-Ion Battery: Physics-Informed Neural Network for Battery State Estimation

电池(电) 杠杆(统计) 计算机科学 人工神经网络 荷电状态 人工智能 航程(航空) 过程(计算) 机器学习 深度学习 工程类 物理 功率(物理) 量子力学 航空航天工程 操作系统
作者
Soumya Singh,Yvonne Eboumbou Ebongue,Shahed Rezaei,Kai Peter Birke
出处
期刊:Batteries [Multidisciplinary Digital Publishing Institute]
卷期号:9 (6): 301-301 被引量:26
标识
DOI:10.3390/batteries9060301
摘要

Accurate forecasting of the lifetime and degradation mechanisms of lithium-ion batteries is crucial for their optimization, management, and safety while preventing latent failures. However, the typical state estimations are challenging due to complex and dynamic cell parameters and wide variations in usage conditions. Physics-based models need a tradeoff between accuracy and complexity due to vast parameter requirements, while machine-learning models require large training datasets and may fail when generalized to unseen scenarios. To address this issue, this paper aims to integrate the physics-based battery model and the machine learning model to leverage their respective strengths. This is achieved by applying the deep learning framework called physics-informed neural networks (PINN) to electrochemical battery modeling. The state of charge and state of health of lithium-ion cells are predicted by integrating the partial differential equation of Fick’s law of diffusion from a single particle model into the neural network training process. The results indicate that PINN can estimate the state of charge with a root mean square error in the range of 0.014% to 0.2%, while the state of health has a range of 1.1% to 2.3%, even with limited training data. Compared to conventional approaches, PINN is less complex while still incorporating the laws of physics into the training process, resulting in adequate predictions, even for unseen situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半缘君完成签到,获得积分10
刚刚
所所应助Doctor刁采纳,获得10
1秒前
2秒前
3秒前
6秒前
6秒前
shyxia完成签到 ,获得积分10
6秒前
xuyi完成签到,获得积分10
6秒前
欢喜火车发布了新的文献求助10
8秒前
9秒前
yoozii发布了新的文献求助10
9秒前
努力学习的阿文完成签到,获得积分10
9秒前
寒暑假发布了新的文献求助10
12秒前
Archer发布了新的文献求助10
12秒前
顾矜应助欢喜火车采纳,获得10
13秒前
Doctor刁发布了新的文献求助10
16秒前
上官老黑完成签到 ,获得积分10
16秒前
葛根完成签到,获得积分10
16秒前
传奇3应助Tempo采纳,获得10
16秒前
17秒前
Forelsket丶关注了科研通微信公众号
17秒前
21秒前
zzz发布了新的文献求助10
24秒前
情怀应助好久不见采纳,获得10
24秒前
CodeCraft应助好久不见采纳,获得10
24秒前
大个应助晴语采纳,获得10
25秒前
Hello应助寒暑假采纳,获得10
26秒前
29秒前
Doctor刁完成签到,获得积分20
30秒前
星辰大海应助郝好月采纳,获得10
31秒前
曹伟发布了新的文献求助20
31秒前
123完成签到,获得积分10
31秒前
33秒前
平常的毛豆应助迟暮采纳,获得30
34秒前
34秒前
隐形曼青应助科研通管家采纳,获得10
36秒前
丘比特应助科研通管家采纳,获得10
36秒前
大个应助科研通管家采纳,获得10
36秒前
sutharsons应助科研通管家采纳,获得100
36秒前
Forelsket丶发布了新的文献求助10
40秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800297
求助须知:如何正确求助?哪些是违规求助? 3345607
关于积分的说明 10325886
捐赠科研通 3062062
什么是DOI,文献DOI怎么找? 1680775
邀请新用户注册赠送积分活动 807201
科研通“疑难数据库(出版商)”最低求助积分说明 763557