亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BCAN: Bidirectional Correct Attention Network for Cross-Modal Retrieval

计算机科学 桥接(联网) 光学(聚焦) 嵌入 语义鸿沟 情态动词 注意力网络 人工智能 自然语言处理 语义学(计算机科学) 相似性(几何) 模式识别(心理学) 图像(数学) 图像检索 物理 化学 高分子化学 光学 程序设计语言 计算机网络
作者
Yang Liu,Hong Liu,Huaqiu Wang,Fanyang Meng,Mengyuan Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (10): 14247-14258 被引量:6
标识
DOI:10.1109/tnnls.2023.3276796
摘要

As a fundamental topic in bridging the gap between vision and language, cross-modal retrieval purposes to obtain the correspondences' relationship between fragments, i.e., subregions in images and words in texts. Compared with earlier methods that focus on learning the visual semantic embedding from images and sentences to the shared embedding space, the existing methods tend to learn the correspondences between words and regions via cross-modal attention. However, such attention-based approaches invariably result in semantic misalignment between subfragments for two reasons: 1) without modeling the relationship between subfragments and the semantics of the entire images or sentences, it will be hard for such approaches to distinguish images or sentences with multiple same semantic fragments and 2) such approaches focus attention evenly on all subfragments, including nonvisual words and a lot of redundant regions, which also will face the problem of semantic misalignment. To solve these problems, this article proposes a bidirectional correct attention network (BCAN), which introduces a novel concept of the relevance between subfragments and the semantics of the entire images or sentences and designs a novel correct attention mechanism by modeling the local and global similarity between images and sentences to correct the attention weights focused on the wrong fragments. Specifically, we introduce a concept about the semantic relationship between subfragments and entire images or sentences and use this concept to solve the semantic misalignment from two aspects. In our correct attention mechanism, we design two independent units to correct the weight of attention focused on the wrong fragments. Global correct unit (GCU) with modeling the global similarity between images and sentences into the attention mechanism to solve the semantic misalignment problem caused by focusing attention on relevant subfragments in irrelevant pairs (RI) and the local correct unit (LCU) consider the difference in the attention weights between fragments among two steps to solve the semantic misalignment problem caused by focusing attention on irrelevant subfragments in relevant pairs (IR). Extensive experiments on large-scale MS-COCO and Flickr30K show that our proposed method outperforms all the attention-based methods and is competitive to the state-of-the-art. Our code and pretrained model are publicly available at: https://github.com/liuyyy111/BCAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粒子耶发布了新的文献求助10
3秒前
照亮世界的ay完成签到,获得积分10
5秒前
BA1完成签到,获得积分10
28秒前
酷波er应助粒子耶采纳,获得10
38秒前
小蘑菇应助饱满的问丝采纳,获得10
51秒前
胡萝卜完成签到,获得积分10
1分钟前
1分钟前
2分钟前
软糖完成签到 ,获得积分10
2分钟前
FashionBoy应助缥缈的夜梅采纳,获得10
2分钟前
2分钟前
彭于晏应助甜蜜的仇血采纳,获得10
2分钟前
方沅完成签到,获得积分10
2分钟前
2分钟前
街道办柏阿姨完成签到 ,获得积分10
2分钟前
cheng_xu完成签到 ,获得积分10
2分钟前
3分钟前
Lucas应助科研通管家采纳,获得10
3分钟前
上官若男应助科研通管家采纳,获得10
3分钟前
852应助科研通管家采纳,获得10
3分钟前
丘比特应助科研通管家采纳,获得30
3分钟前
白樱恋曲完成签到 ,获得积分10
3分钟前
偶像的黄昏应助婉晴采纳,获得30
4分钟前
七七完成签到,获得积分10
4分钟前
CodeCraft应助Breeze采纳,获得30
4分钟前
4分钟前
4分钟前
粒子耶发布了新的文献求助10
4分钟前
ZaZa完成签到,获得积分10
4分钟前
5分钟前
粒子耶完成签到,获得积分10
5分钟前
丫头发布了新的文献求助10
5分钟前
夙夙完成签到 ,获得积分20
5分钟前
5分钟前
沈迎南发布了新的文献求助30
5分钟前
5分钟前
丫头完成签到,获得积分20
5分钟前
所谓伊人完成签到,获得积分20
5分钟前
阿杰完成签到 ,获得积分10
6分钟前
Ji发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
The Handbook of Communication Skills 500
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
François Ravary SJ and a Sino-European Musical Culture in Nineteenth-Century Shanghai 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4794690
求助须知:如何正确求助?哪些是违规求助? 4115965
关于积分的说明 12733740
捐赠科研通 3844973
什么是DOI,文献DOI怎么找? 2119248
邀请新用户注册赠送积分活动 1141349
关于科研通互助平台的介绍 1030286