Understanding the spatial non-stationarity in the relationships between malaria incidence and environmental risk factors using Geographically Weighted Random Forest: A case study in Rwanda.

随机森林 克里金 地理 疟疾 入射(几何) 广义线性模型 广义加性模型 自然地理学 统计 地图学 数学 计算机科学 生物 几何学 机器学习 免疫学
作者
Gilbert Nduwayezu,Pengxiang Zhao,Clarisse Kagoyire,Lina Eklund,Jean Pierre Bizimana,Petter Pilesjö,Ali Mansourian
出处
期刊:Geospatial Health [PAGEPress Publications]
卷期号:18 (1) 被引量:5
标识
DOI:10.4081/gh.2023.1184
摘要

As found in the health studies literature, the levels of climate association between epidemiological diseases have been found to vary across regions. Therefore, it seems reasonable to allow for the possibility that relationships might vary spatially within regions. We implemented the geographically weighted random forest (GWRF) machine learning method to analyze ecological disease patterns caused by spatially non-stationary processes using a malaria incidence dataset for Rwanda. We first compared the geographically weighted regression (WGR), the global random forest (GRF), and the geographically weighted random forest (GWRF) to examine the spatial non-stationarity in the non-linear relationships between malaria incidence and their risk factors. We used the Gaussian areal kriging model to disaggregate the malaria incidence at the local administrative cell level to understand the relationships at a fine scale since the model goodness of fit was not satisfactory to explain malaria incidence due to the limited number of sample values. Our results show that in terms of the coefficients of determination and prediction accuracy, the geographical random forest model performs better than the GWR and the global random forest model. The coefficients of determination of the geographically weighted regression (R2), the global RF (R2), and the GWRF (R2) were 4.74, 0.76, and 0.79, respectively. The GWRF algorithm achieves the best result and reveals that risk factors (rainfall, land surface temperature, elevation, and air temperature) have a strong non-linear relationship with the spatial distribution of malaria incidence rates, which could have implications for supporting local initiatives for malaria elimination in Rwanda.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助Dylan采纳,获得10
刚刚
烟花易逝关注了科研通微信公众号
1秒前
1秒前
3秒前
iNk应助you采纳,获得10
4秒前
4秒前
4秒前
熊熊发布了新的文献求助10
5秒前
zm发布了新的文献求助10
5秒前
hyPang发布了新的文献求助10
6秒前
uuup2U完成签到,获得积分10
6秒前
SciGPT应助饱满的灵阳采纳,获得10
6秒前
科研通AI6.1应助杨玲采纳,获得10
7秒前
杜康完成签到,获得积分10
7秒前
7秒前
dxy发布了新的文献求助10
8秒前
周周完成签到,获得积分10
9秒前
9秒前
小蘑菇应助河狸上校采纳,获得30
9秒前
Orange应助ibigbird采纳,获得10
9秒前
du完成签到 ,获得积分10
10秒前
汉堡包应助七页禾采纳,获得10
11秒前
11秒前
科研通AI6.1应助zm采纳,获得10
12秒前
12秒前
李健应助hyPang采纳,获得10
12秒前
科研通AI6.1应助wenbin采纳,获得10
13秒前
NguyenRe18完成签到,获得积分10
13秒前
12233发布了新的文献求助10
14秒前
听曲散步完成签到,获得积分10
16秒前
张姣姣完成签到 ,获得积分10
18秒前
19秒前
20秒前
失眠紫真发布了新的文献求助10
20秒前
缥缈的冬萱完成签到,获得积分10
20秒前
Hello应助luluan采纳,获得10
20秒前
鱼鱼鱼发布了新的文献求助10
23秒前
fugu0完成签到,获得积分10
23秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5827665
求助须知:如何正确求助?哪些是违规求助? 6026262
关于积分的说明 15573117
捐赠科研通 4947667
什么是DOI,文献DOI怎么找? 2665639
邀请新用户注册赠送积分活动 1611472
关于科研通互助平台的介绍 1566311