Detecting Paroxysmal Atrial Fibrillation From an Electrocardiogram in Sinus Rhythm

心房颤动 医学 内科学 窦性心律 心脏病学 心电图 接收机工作特性 正常窦性心律 阵发性心房颤动 曲线下面积
作者
Henri Gruwez,Monika Barthels,Peter Haemers,Frederik H Verbrugge,Sebastiaan Dhont,Evelyne Meekers,Femke Wouters,Dieter Nuyens,Laurent Pison,Pieter Vandervoort,Noella Pierlet
出处
期刊:JACC: Clinical Electrophysiology [Elsevier BV]
卷期号:9 (8): 1771-1782
标识
DOI:10.1016/j.jacep.2023.04.008
摘要

Atrial fibrillation (AF) may occur asymptomatically and can be diagnosed only with electrocardiography (ECG) while the arrhythmia is present. The aim of this study was to independently validate the approach of using artificial intelligence (AI) to identify underlying paroxysmal AF from a 12-lead ECG in sinus rhythm (SR). An AI algorithm was trained to identify patients with underlying paroxysmal AF, using electrocardiographic data from all in- and outpatients from a single center with at least 1 ECG in SR. For patients without AF, all ECGs in SR were included. For patients with AF, all ECGs in SR starting 31 days before the first AF event were included. The patients were randomly allocated to training, internal validation, and testing datasets in a 7:1:2 ratio. In a secondary analysis, the AF prevalence of the testing group was modified. Additionally, the performance of the algorithm was validated at an external hospital. The dataset consisted of 494,042 ECGs in SR from 142,310 patients. Testing the model on the first ECG of each patient (AF prevalence 9.0%) resulted in accuracy of 78.1% (95% CI: 77.6%-78.5%), area under the receiver-operating characteristic curve of 0.87 (95% CI: 0.86-0.87), and area under the precision recall curve (AUPRC) of 0.48 (95% CI: 0.46-0.50). In a low-risk group (AF prevalence 3%), the AUPRC decreased to 0.21 (95% CI: 0.18-0.24). In a high-risk group (AF prevalence 30%), the AUPRC increased to 0.76 (95% CI: 0.75-0.78). This performance was robust when validated in an external hospital. The approach of using an AI-enabled electrocardiographic algorithm for the identification of patients with underlying paroxysmal AF from ECGs in SR was independently validated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
红叶发布了新的文献求助10
1秒前
Christina完成签到,获得积分10
1秒前
叩桥不渡完成签到,获得积分10
2秒前
3秒前
FashionBoy应助雯子采纳,获得10
3秒前
3秒前
Tycoon发布了新的文献求助10
4秒前
咕咕咕完成签到,获得积分10
4秒前
4秒前
lan完成签到,获得积分10
4秒前
香蕉八宝粥完成签到,获得积分10
4秒前
动漫大师发布了新的文献求助10
5秒前
5秒前
5秒前
化尾鱼完成签到,获得积分10
6秒前
眯眯眼的飞莲完成签到,获得积分10
6秒前
在水一方应助杜梦寅采纳,获得10
6秒前
努力加油煤老八完成签到 ,获得积分10
7秒前
7秒前
cdercder应助张两丰采纳,获得10
8秒前
8秒前
金子悠月完成签到,获得积分10
9秒前
Seotter发布了新的文献求助10
9秒前
每天读顶刊完成签到,获得积分10
10秒前
10秒前
Lh6610完成签到,获得积分0
11秒前
天天小女孩完成签到,获得积分10
11秒前
77完成签到,获得积分10
11秒前
开心以珊发布了新的文献求助10
11秒前
武紫安发布了新的文献求助10
11秒前
科研通AI2S应助芋泥采纳,获得10
11秒前
CodeCraft应助松果采纳,获得10
11秒前
学术老6完成签到,获得积分10
11秒前
12秒前
13秒前
美羊羊完成签到,获得积分10
13秒前
科研通AI2S应助Tycoon采纳,获得10
13秒前
123321完成签到 ,获得积分10
14秒前
SpONGeBOb完成签到 ,获得积分10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796285
求助须知:如何正确求助?哪些是违规求助? 3341253
关于积分的说明 10305258
捐赠科研通 3057801
什么是DOI,文献DOI怎么找? 1677917
邀请新用户注册赠送积分活动 805718
科研通“疑难数据库(出版商)”最低求助积分说明 762740