A Self-Powered Multimodal Sen-Memory System

神经形态工程学 记忆电阻器 计算机科学 电阻随机存取存储器 电压 电子工程 电气工程 人工智能 工程类 人工神经网络
作者
Xuefei Wang,Xiaoning Zhao,Zhuangzhuang Li,Tao Ye,Zhongqiang Wang,Ya Lin,Haiyang Xu,Yichun Liu
出处
期刊:IEEE Electron Device Letters [Institute of Electrical and Electronics Engineers]
卷期号:45 (7): 1189-1192 被引量:4
标识
DOI:10.1109/led.2024.3400949
摘要

The development of multimodal systems with fused sensing-and-memory (sen–memory) functionalities is drawing growing attention for artificial intelligence applications. However, conventional systems typically record the information based on a coinput of sensory signal and the electrical signal. Self-powered multimodal sen–memory system has the potential to promote highly efficient neuromorphic applications and remains to be studied. Herein, we demonstrate the fabrication of pectin nanowire-based moisture generator and pectin film-based "quantized" memristor. The generator can serve as both a power supply and a humidity sensor. Electric energy harvested by the generator from ambient humidity can drive the memristor. Integrating the generator, the memristor, a capacitor, and a photoresistor yields self-powered system that can record the humidity and optical information. Benefit from the voltage-dependent multilevel quantized conductance (QC) of the memristor, the magnitude of humidity and optical stimulus can be distinguished. In addition, taking advantage of the multilevel QC switching behavior, image pattern recognition are successfully realized by constructing an artificial neuromorphic network simulator with a 238×242 memristor array. The present sen-memory system can be applied to emulate multimode-fused sensing and memory behavior of human visual memory for future efficient bio-realistic applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心语发布了新的文献求助10
1秒前
1秒前
Vincent发布了新的文献求助30
1秒前
2秒前
3秒前
3秒前
整齐的巧荷关注了科研通微信公众号
3秒前
carbon发布了新的文献求助10
4秒前
丽丽丽发布了新的文献求助10
4秒前
4秒前
念于惜i完成签到 ,获得积分10
4秒前
4秒前
桥桥发布了新的文献求助10
5秒前
5秒前
5秒前
bkagyin应助科研混子采纳,获得10
5秒前
所所应助科研混子采纳,获得10
5秒前
科研通AI6应助雪白的傥采纳,获得10
5秒前
桐桐应助科研混子采纳,获得10
5秒前
5秒前
5秒前
Amanda发布了新的文献求助10
5秒前
研友_VZG7GZ应助ck采纳,获得10
5秒前
6秒前
Hello应助温谷采纳,获得10
6秒前
哈哈哈哈发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
桐桐应助he采纳,获得10
7秒前
7秒前
8秒前
李爱国应助刘仁轨采纳,获得10
8秒前
白白发布了新的文献求助10
9秒前
研友_nPPz9n发布了新的文献求助10
9秒前
小胖鱼发布了新的文献求助30
9秒前
天天快乐应助张小哥12采纳,获得10
10秒前
现在拨打发布了新的文献求助10
11秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506003
求助须知:如何正确求助?哪些是违规求助? 4601533
关于积分的说明 14477031
捐赠科研通 4535471
什么是DOI,文献DOI怎么找? 2485413
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440873