清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Training Large-Scale Graph Neural Networks via Graph Partial Pooling

计算机科学 联营 图形 人工智能 理论计算机科学
作者
Qi Zhang,Yanfeng Sun,Shaofan Wang,Junbin Gao,Yongli Hu,Baocai Yin
出处
期刊:IEEE Transactions on Big Data [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 221-233 被引量:1
标识
DOI:10.1109/tbdata.2024.3403380
摘要

Graph Neural Networks (GNNs) are powerful tools for graph representation learning, but they face challenges when applied to large-scale graphs due to substantial computational costs and memory requirements. To address scalability limitations, various methods have been proposed, including samplingbased and decoupling-based methods. However, these methods have their limitations: sampling-based methods inevitably discard some link information during the sampling process, while decoupling-based methods require alterations to the model's structure, reducing their adaptability to various GNNs. This paper proposes a novel graph pooling method, Graph Partial Pooling (GPPool), for scaling GNNs to large-scale graphs. GPPool is a versatile and straightforward technique that enhances training efficiency while simultaneously reducing memory requirements. GPPool constructs small-scale pooled graphs by pooling partial nodes into supernodes. Each pooled graph consists of supernodes and unpooled nodes, preserving valuable local and global information. Training GNNs on these graphs reduces memory demands and enhances their performance. Additionally, this paper provides a theoretical analysis of training GNNs using GPPool-constructed graphs from a graph diffusion perspective. It shows that a GNN can be transformed from a large-scale graph into pooled graphs with minimal approximation error. A series of experiments on datasets of varying scales demonstrates the effectiveness of GPPool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CC完成签到,获得积分10
4秒前
缓慢的自行车完成签到 ,获得积分10
27秒前
36秒前
41秒前
高兴寒梦完成签到 ,获得积分10
44秒前
49秒前
fan发布了新的文献求助10
54秒前
皮皮团完成签到 ,获得积分10
1分钟前
fan完成签到,获得积分10
1分钟前
cui完成签到,获得积分10
1分钟前
1分钟前
1分钟前
yicui发布了新的文献求助10
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
嘟嘟噜发布了新的文献求助10
1分钟前
我是老大应助嘟嘟噜采纳,获得10
1分钟前
2分钟前
璐璐在这完成签到,获得积分10
2分钟前
璐璐在这发布了新的文献求助10
2分钟前
siijjfjjf完成签到 ,获得积分10
2分钟前
桃花源的瓶起子完成签到 ,获得积分10
2分钟前
CodeCraft应助lalplol采纳,获得10
2分钟前
随心所欲完成签到 ,获得积分10
2分钟前
lalplol完成签到,获得积分10
2分钟前
2分钟前
lalplol发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
大医仁心完成签到 ,获得积分10
3分钟前
4分钟前
5分钟前
FashionBoy应助科研通管家采纳,获得10
5分钟前
5分钟前
嘟嘟噜发布了新的文献求助10
5分钟前
5分钟前
5分钟前
嘟嘟噜完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Processing of reusable surgical textiles for use in health care facilities 500
Population genetics 2nd edition 500
工学基礎離散数学とその応用[第2版] 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5809132
求助须知:如何正确求助?哪些是违规求助? 5878810
关于积分的说明 15524798
捐赠科研通 4933499
什么是DOI,文献DOI怎么找? 2656747
邀请新用户注册赠送积分活动 1602994
关于科研通互助平台的介绍 1558286