ConvNextUNet: A small-region attentioned model for cardiac MRI segmentation

分割 计算机科学 人工智能 编码器 感兴趣区域 模式识别(心理学) 背景(考古学) 深度学习 一般化 机器学习 数学 生物 操作系统 数学分析 古生物学
作者
Huiyi Zhang,Zemin Cai
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:177: 108592-108592 被引量:5
标识
DOI:10.1016/j.compbiomed.2024.108592
摘要

Cardiac MRI segmentation is a significant research area in medical image processing, holding immense clinical and scientific importance in assisting the diagnosis and treatment of heart diseases. Currently, existing cardiac MRI segmentation algorithms are often constrained by specific datasets and conditions, leading to a notable decrease in segmentation performance when applied to diverse datasets. These limitations affect the algorithm's overall performance and generalization capabilities. Inspired by ConvNext, we introduce a two-dimensional cardiac MRI segmentation U-shaped network called ConvNextUNet. It is the first application of a combination of ConvNext and the U-shaped architecture in the field of cardiac MRI segmentation. Firstly, we incorporate up-sampling modules into the original ConvNext architecture and combine it with the U-shaped framework to achieve accurate reconstruction. Secondly, we integrate Input Stem into ConvNext, and introduce attention mechanisms along the bridging path. By merging features extracted from both the encoder and decoder, a probability distribution is obtained through linear and nonlinear transformations, serving as attention weights, thereby enhancing the signal of the same region of interest. The resulting attention weights are applied to the decoder features, highlighting the region of interest. This allows the model to simultaneously consider local context and global details during the learning phase, fully leveraging the advantages of both global and local perception for a more comprehensive understanding of cardiac anatomical structures. Consequently, the model demonstrates a clear advantage and robust generalization capability, especially in small-region segmentation. Experimental results on the ACDC, LVQuan19, and RVSC datasets confirm that the ConvNextUNet model outperforms the current state-of-the-art models, particularly in small-region segmentation tasks. Furthermore, we conducted cross-dataset training and testing experiments, which revealed that the pre-trained model can accurately segment diverse cardiac datasets, showcasing its powerful generalization capabilities. The source code of this project is available at https://github.com/Zemin-Cai/ConvNextUNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路灵槐完成签到,获得积分10
刚刚
刚刚
斯文冷梅发布了新的文献求助10
刚刚
1秒前
SciGPT应助留胡子的谷雪采纳,获得10
1秒前
虚拟的黄蜂完成签到,获得积分10
1秒前
lcj1014发布了新的文献求助10
1秒前
懒洋洋完成签到,获得积分10
2秒前
爆米花应助啊打发撒旦采纳,获得30
2秒前
bkagyin应助wuu采纳,获得10
3秒前
3秒前
小鲤鱼完成签到,获得积分10
3秒前
3秒前
3秒前
EnjieYu完成签到,获得积分10
3秒前
4秒前
一壶古酒完成签到,获得积分10
4秒前
饱满的幼翠完成签到,获得积分10
4秒前
鹿鹿露露发布了新的文献求助10
5秒前
6秒前
柯学家完成签到 ,获得积分10
6秒前
oo完成签到,获得积分10
6秒前
123456完成签到,获得积分10
6秒前
EnjieYu发布了新的文献求助10
6秒前
合适夜绿发布了新的文献求助30
7秒前
羊羊羊发布了新的文献求助10
7秒前
陌姌完成签到,获得积分10
7秒前
posh完成签到 ,获得积分10
7秒前
执着的招牌完成签到,获得积分10
8秒前
8秒前
8秒前
小马甲应助大白采纳,获得20
9秒前
Han发布了新的文献求助10
9秒前
执着白筠发布了新的文献求助10
9秒前
科研通AI2S应助王肖宁采纳,获得10
9秒前
hahha完成签到,获得积分10
9秒前
10秒前
10秒前
harik完成签到 ,获得积分10
10秒前
义气代梅发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5176731
求助须知:如何正确求助?哪些是违规求助? 4365543
关于积分的说明 13592423
捐赠科研通 4215476
什么是DOI,文献DOI怎么找? 2312013
邀请新用户注册赠送积分活动 1310839
关于科研通互助平台的介绍 1258963