ConvNextUNet: A small-region attentioned model for cardiac MRI segmentation

分割 计算机科学 人工智能 编码器 感兴趣区域 模式识别(心理学) 背景(考古学) 深度学习 一般化 机器学习 数学 生物 操作系统 数学分析 古生物学
作者
Huiyi Zhang,Zemin Cai
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:177: 108592-108592 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108592
摘要

Cardiac MRI segmentation is a significant research area in medical image processing, holding immense clinical and scientific importance in assisting the diagnosis and treatment of heart diseases. Currently, existing cardiac MRI segmentation algorithms are often constrained by specific datasets and conditions, leading to a notable decrease in segmentation performance when applied to diverse datasets. These limitations affect the algorithm's overall performance and generalization capabilities. Inspired by ConvNext, we introduce a two-dimensional cardiac MRI segmentation U-shaped network called ConvNextUNet. It is the first application of a combination of ConvNext and the U-shaped architecture in the field of cardiac MRI segmentation. Firstly, we incorporate up-sampling modules into the original ConvNext architecture and combine it with the U-shaped framework to achieve accurate reconstruction. Secondly, we integrate Input Stem into ConvNext, and introduce attention mechanisms along the bridging path. By merging features extracted from both the encoder and decoder, a probability distribution is obtained through linear and nonlinear transformations, serving as attention weights, thereby enhancing the signal of the same region of interest. The resulting attention weights are applied to the decoder features, highlighting the region of interest. This allows the model to simultaneously consider local context and global details during the learning phase, fully leveraging the advantages of both global and local perception for a more comprehensive understanding of cardiac anatomical structures. Consequently, the model demonstrates a clear advantage and robust generalization capability, especially in small-region segmentation. Experimental results on the ACDC, LVQuan19, and RVSC datasets confirm that the ConvNextUNet model outperforms the current state-of-the-art models, particularly in small-region segmentation tasks. Furthermore, we conducted cross-dataset training and testing experiments, which revealed that the pre-trained model can accurately segment diverse cardiac datasets, showcasing its powerful generalization capabilities. The source code of this project is available at https://github.com/Zemin-Cai/ConvNextUNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1234发布了新的文献求助10
2秒前
丘比特应助Tempo采纳,获得10
3秒前
3秒前
王红玉完成签到,获得积分10
5秒前
7秒前
7秒前
7秒前
可爱的函函应助风轻萤采纳,获得10
8秒前
Jennifer发布了新的文献求助10
11秒前
赤江之木完成签到 ,获得积分10
11秒前
科研通AI5应助Vivian采纳,获得10
12秒前
解杰发布了新的文献求助10
13秒前
cdercder应助笨笨的梦松采纳,获得10
20秒前
真实的德天完成签到 ,获得积分10
20秒前
22秒前
超人Steiner完成签到,获得积分10
22秒前
源源完成签到 ,获得积分10
25秒前
半柚应助Liyipu采纳,获得10
28秒前
半柚发布了新的文献求助10
29秒前
务实的寻凝完成签到 ,获得积分20
29秒前
希望天下0贩的0应助Aditi采纳,获得10
30秒前
31秒前
fff完成签到 ,获得积分10
35秒前
英姑应助鳗鱼友琴采纳,获得10
35秒前
今后应助夜话风陵杜采纳,获得10
35秒前
35秒前
41秒前
Endo5发布了新的文献求助10
41秒前
wenwen完成签到 ,获得积分10
42秒前
Lee完成签到,获得积分20
43秒前
44秒前
Aditi发布了新的文献求助10
45秒前
49秒前
Alex应助炙热柚子采纳,获得30
49秒前
鳗鱼友琴发布了新的文献求助10
49秒前
51秒前
52秒前
mao305发布了新的文献求助10
55秒前
li发布了新的文献求助10
56秒前
嘎嘎嘎完成签到,获得积分10
57秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802551
求助须知:如何正确求助?哪些是违规求助? 3348222
关于积分的说明 10337161
捐赠科研通 3064171
什么是DOI,文献DOI怎么找? 1682425
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 764010