Precision Sensitivity Optimization for Parallel Robotic System Based on Multi-Source Preventive Maintenance

预防性维护 灵敏度(控制系统) 计算机科学 可靠性工程 工程类 电子工程
作者
Mingzhe Tao,Jinghua Xu,Shuyou Zhang,Jianrong Tan,Jingxuan Xu
出处
期刊:International Journal of Reliability, Quality and Safety Engineering [World Scientific]
卷期号:31 (05) 被引量:2
标识
DOI:10.1142/s0218539324500190
摘要

This paper presents a multi-source preventive maintenance (MPM) based precision sensitivity optimization method for parallel robotic systems. Taking a parallel mechanism as an example, the input error can be divided into finite mutually independent uncertain error sources, and the probabilistic error model is established by the Monte Carlo stochastic method. Considering that several times of maintenance can lead to an increase of the accuracy degradation factor, a generalized hierarchy maintenance yield model is established, where the cost of preventive maintenance and failure replacement maintenance are distinguished between the independent error source and the overall error source. The nonlinear relationship between the maintenance yield per unit cost and influencing factors, including the error threshold and the maintenance times is obtained, which allows to develop an optimal maintenance strategy. Preventive maintenance is introduced to avoid unintended failure of the mechanism while extending the lifetime. The high-precision parallel mechanism has demonstrated promising applications in medical, industrial and other fields, and its economic benefits can be effectively improved by incorporating the MPM method. The experiment of manufacturing human lung models using a parallel 3D printing device demonstrates that the MPM method can improve the long-term precision and reliability of the parallel device, and the optimized human lung contour tracking precision can be improved by up to 55.56%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
垃圾完成签到 ,获得积分10
1秒前
DAKE完成签到 ,获得积分10
2秒前
2秒前
Akim应助七七采纳,获得10
2秒前
Ting_Yang完成签到 ,获得积分10
3秒前
3秒前
Nano发布了新的文献求助10
5秒前
阿铭完成签到 ,获得积分10
5秒前
6秒前
吹吹晚风发布了新的文献求助10
9秒前
10秒前
14秒前
16秒前
加油少年完成签到,获得积分10
16秒前
jialin完成签到 ,获得积分10
17秒前
稳重的蛟凤应助zxer采纳,获得10
17秒前
眼底星空发布了新的文献求助10
18秒前
邱佩群完成签到 ,获得积分10
24秒前
Knight完成签到,获得积分10
25秒前
ssw完成签到,获得积分20
28秒前
完美世界应助MOF采纳,获得10
29秒前
小许发布了新的文献求助10
32秒前
宋宋不迷糊完成签到 ,获得积分10
33秒前
ssw发布了新的文献求助10
33秒前
35秒前
36秒前
Negan发布了新的文献求助10
40秒前
英俊青旋完成签到 ,获得积分10
46秒前
Jasper应助崔志海采纳,获得10
49秒前
58秒前
59秒前
香蕉觅云应助缥缈的绿兰采纳,获得10
1分钟前
小蘑菇应助一一采纳,获得10
1分钟前
狗蛋发布了新的文献求助10
1分钟前
肃肃其羽完成签到 ,获得积分10
1分钟前
1分钟前
finn发布了新的文献求助10
1分钟前
深情安青应助zhx采纳,获得10
1分钟前
小思完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Competency Based Human Resource Management 500
How to Develop Robust Scale-up Strategies for Complex Injectable Dosage Forms 450
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5863759
求助须知:如何正确求助?哪些是违规求助? 6395007
关于积分的说明 15649649
捐赠科研通 4977930
什么是DOI,文献DOI怎么找? 2685204
邀请新用户注册赠送积分活动 1628291
关于科研通互助平台的介绍 1585968