CD-SLAM: A Real-Time Stereo Visual–Inertial SLAM for Complex Dynamic Environments With Semantic and Geometric Information

计算机视觉 同时定位和映射 惯性参考系 人工智能 计算机科学 可视化 惯性测量装置 机器人 移动机器人 物理 量子力学
作者
Shuhuan Wen,Sheng Tao,Xin Liu,Artur Babiarz,F. Richard Yu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-8 被引量:20
标识
DOI:10.1109/tim.2024.3396858
摘要

The most commonly used simultaneous localization and mapping (SLAM) scheme often assumes a static environment, leading to significant errors in pose estimation when operating in highly dynamic scenes. To address this limitation and improve the robustness and accuracy of positioning in dynamic environments, this study proposes CD-SLAM, a real-time stereo vision inertial SLAM system specifically designed for complex dynamic environments, based on ORB-SLAM3. CD-SLAM enhances the tracking thread and introduces a new parallel thread that utilizes YOLOv5 to detect objects in each input frame and extract semantic information. This semantic information, combined with prior information from the inertial measurement unit (IMU), is used for pose estimation, eliminating the pose information of dynamic objects and consequently improving the accuracy and robustness of positioning. Furthermore, CD-SLAM employs scene flow to calculate the distance between adjacent frames and determine the spatial velocity between them, compensating for potential static information through a velocity filtering algorithm. To enhance positioning accuracy in challenging environments with weak textures, CD-SLAM integrates an IMU for motion prediction and coherence detection. Finally, appeal information is integrated to determine the motion status of objects in the scene and filter out dynamic feature points. Experimental tests conducted on the VIODE dataset demonstrate that CD-SLAM outperforms existing algorithms in terms of accuracy and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pofeng发布了新的文献求助10
刚刚
3秒前
小蘑菇应助云里采纳,获得10
7秒前
sakol发布了新的文献求助30
8秒前
8秒前
8秒前
酷炫大白完成签到,获得积分10
10秒前
嘶喊发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
上官若男应助JA采纳,获得10
12秒前
深情安青应助Lee采纳,获得30
14秒前
14秒前
yt完成签到,获得积分10
14秒前
小二郎应助12采纳,获得10
15秒前
乖拉完成签到,获得积分10
15秒前
16秒前
weifengzhong发布了新的文献求助20
17秒前
18秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
烟花应助科研通管家采纳,获得10
19秒前
斯文败类应助科研通管家采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
柏林寒冬应助科研通管家采纳,获得10
19秒前
19秒前
小马甲应助科研通管家采纳,获得10
19秒前
19秒前
乐乐应助pofeng采纳,获得10
19秒前
20秒前
ninomae完成签到 ,获得积分10
20秒前
完美世界应助今夕是何年采纳,获得10
20秒前
21秒前
22秒前
22秒前
22秒前
22秒前
Blueyi完成签到,获得积分10
25秒前
卿卿发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4404082
求助须知:如何正确求助?哪些是违规求助? 3890438
关于积分的说明 12107527
捐赠科研通 3535151
什么是DOI,文献DOI怎么找? 1939763
邀请新用户注册赠送积分活动 980639
科研通“疑难数据库(出版商)”最低求助积分说明 877384