Recent advances and effectiveness of machine learning models for fluid dynamics in the built environment

计算机科学 动力学(音乐) 人工智能 机器学习 心理学 教育学
作者
Tran Van Quang,Dat Tien Doan,Geun Young Yun
出处
期刊:International Journal of Modelling and Simulation [Taylor & Francis]
卷期号:: 1-27
标识
DOI:10.1080/02286203.2024.2371682
摘要

Indoor environmental quality is crucial for human health and comfort, necessitating precise and efficient computational methods to optimise indoor climate parameters. Recent advancements in machine learning (ML) and computational fluid dynamics (CFD) are promising. However, applying ML to complex building airflow presents challenges. This research aims to investigate the integration of ML with CFD in the context of built environment applications using a systematic review approach. It highlights a critical knowledge gap: the need to synthesise innovative approaches that address the limitations of indoor modelling using data-driven ML methods. The review examines contemporary literature, identifying current developments and suggesting potential future directions. It delves into the innovations in combining ML with CFD to predict thermal comfort and indoor air quality, uncovering key limitations such as the lack of high-quality experimental data for training and validation, the computational complexity of detailed CFD simulations, and the interpretability issues of 'black-box' ML models. The emergence of data-driven techniques in fluid mechanics offers promising prospects for modelling in the built environment. Future research should focus on incorporating physics-based rules in ML models, adapting turbulence closure models for indoor flows, and enhancing model validation using real-world datasets. The research emphasises the synergistic relationship between ML and CFD; it proposes pathways to overcome current limitations, aiming to enhance the precision and efficiency of indoor environment modelling through their integration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洁净白容完成签到,获得积分10
刚刚
追寻的怜容发布了新的文献求助200
2秒前
搜集达人应助欢呼的镜子采纳,获得10
2秒前
甜美河马完成签到,获得积分20
3秒前
4秒前
4秒前
默默向雪完成签到,获得积分0
4秒前
6秒前
我是老大应助1234sxcv采纳,获得10
7秒前
7秒前
HM发布了新的文献求助10
9秒前
研友_LwbGg8发布了新的文献求助10
9秒前
平常雪柳完成签到 ,获得积分10
10秒前
Srishti完成签到,获得积分10
10秒前
HP完成签到,获得积分10
11秒前
yfl完成签到,获得积分10
12秒前
小张z完成签到,获得积分10
12秒前
FashionBoy应助杳子尧采纳,获得10
12秒前
77最可爱完成签到,获得积分10
13秒前
13秒前
如意完成签到,获得积分10
14秒前
14秒前
欢呼的镜子完成签到,获得积分20
14秒前
气945完成签到,获得积分10
14秒前
hhhh发布了新的文献求助10
14秒前
15秒前
speed完成签到 ,获得积分10
17秒前
星辰大海应助气945采纳,获得10
18秒前
19秒前
zky发布了新的文献求助10
19秒前
dd发布了新的文献求助10
20秒前
深情安青应助的地方法规采纳,获得10
21秒前
22秒前
24秒前
雨晴完成签到,获得积分10
26秒前
科研通AI2S应助剪影改采纳,获得10
28秒前
研友_LwbGg8发布了新的文献求助10
29秒前
29秒前
SciGPT应助个性的翠芙采纳,获得10
30秒前
释棱完成签到 ,获得积分10
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782938
求助须知:如何正确求助?哪些是违规求助? 3328272
关于积分的说明 10235420
捐赠科研通 3043338
什么是DOI,文献DOI怎么找? 1670491
邀请新用户注册赠送积分活动 799731
科研通“疑难数据库(出版商)”最低求助积分说明 759033